Abstract
Although various recommendation techniques have been applied to the e-commerce market, few studies compare the intent to use these techniques from the customer’s perspective. In this paper, we conduct a comparative analysis of customers’ intention to use five recommendation techniques widely adapted by online shopping malls and focus on the differences in purchasing electronic goods and apparel products. The recommendation techniques are as follows: best-seller recommendation, merchandiser recommendation, content-based recommendation, collaborative filtering recommendation, and social recommendation. Additionally, we examine which factors influence customer intent to use the recommendation services. Data were collected through a survey administered to 220 e-commerce users with prior experience with recommendation services. Collected data were examined using analysis of variance and regression analysis. Results indicate statistically significant differences in customers’ intention to use recommendation services according to the recommendation technique. In particular, the best-seller recommendation technique is preferred when purchasing electronic goods, whereas the content-based recommendation technique is preferred for apparel purchases. Factors such as personal characteristics and personality, purchasing tendency, as well as perception of the product or recommendation service affect a customer’s intention to use a recommendation service. However, the influence of these factors varies depending on the recommendation technique. This study provides guidelines for companies to adopt appropriate recommendation techniques according to product categories and personal characteristics of customers.
Translated title of the contribution | An Analysis of Customer Preferences of Recommendation Techniques and Influencing Factors : A Comparative Study of Electronic Goods and Apparel Products |
---|---|
Original language | Korean |
Pages (from-to) | 59-77 |
Number of pages | 19 |
Journal | Information Systems Review |
Volume | 18 |
Issue number | 2 |
DOIs | |
State | Published - Jun 2016 |