TY - JOUR
T1 - 3D Printing of Bioinspired Alginate-Albumin Based Instant Gel Ink with Electroconductivity and Its Expansion to Direct Four-Axis Printing of Hollow Porous Tubular Constructs without Supporting Materials
AU - Janarthanan, Gopinathan
AU - Lee, Sumin
AU - Noh, Insup
N1 - Publisher Copyright:
© 2021 Wiley-VCH GmbH
PY - 2021/11/3
Y1 - 2021/11/3
N2 - A successful 3D printable hydrogel ink needs not only biofunctionalities but also minimal fabrication steps such as multiple crosslinking sites, high printability, cytocompatibility, high shape fidelity, stability, shear thinning, robust properties, and less time-consuming processing steps, by maximizing known material chemistries and functionalities. This work reports a novel bioinspired conjugate with polysaccharide (alginate)–tannic acid (TA)–protein (bovine serum albumin) to fabricate proteoglycan-like gels, which are 3D printable with multilayers, shear-thinning, elastic, electroconductive (with carbon nanotubes), controlled crosslinking/degradation through multiple crosslinking mechanisms (TA, Ca2+ ions, and NaIO4 oxidation), and interactions with cytocompatible hydrogel system. The synthesis process is simple, and gelation (within 2 h) is ensured without any chemical crosslinking agents (at room temperature). While cell-adhesive albumin largely improves cytocompatibility, carbon nanotubes in the gel give electrical conductivity in the different four-axis 3D printed structures, including large hollow tubular constructs. This work demonstrates promising results of electroconductive proteoglycan-like gel ink to address the challenges in 3D/four-axis ink printing such as synthesis, printability, shape fidelity, electroconductivity, controlled fabrication and degradation, cytocompatibility, and multiple crosslinking abilities to maintain the dimensions of the diversely printed constructs.
AB - A successful 3D printable hydrogel ink needs not only biofunctionalities but also minimal fabrication steps such as multiple crosslinking sites, high printability, cytocompatibility, high shape fidelity, stability, shear thinning, robust properties, and less time-consuming processing steps, by maximizing known material chemistries and functionalities. This work reports a novel bioinspired conjugate with polysaccharide (alginate)–tannic acid (TA)–protein (bovine serum albumin) to fabricate proteoglycan-like gels, which are 3D printable with multilayers, shear-thinning, elastic, electroconductive (with carbon nanotubes), controlled crosslinking/degradation through multiple crosslinking mechanisms (TA, Ca2+ ions, and NaIO4 oxidation), and interactions with cytocompatible hydrogel system. The synthesis process is simple, and gelation (within 2 h) is ensured without any chemical crosslinking agents (at room temperature). While cell-adhesive albumin largely improves cytocompatibility, carbon nanotubes in the gel give electrical conductivity in the different four-axis 3D printed structures, including large hollow tubular constructs. This work demonstrates promising results of electroconductive proteoglycan-like gel ink to address the challenges in 3D/four-axis ink printing such as synthesis, printability, shape fidelity, electroconductivity, controlled fabrication and degradation, cytocompatibility, and multiple crosslinking abilities to maintain the dimensions of the diversely printed constructs.
KW - alginate
KW - biomaterial inks
KW - bovine serum albumin
KW - four-axis printing
KW - tannic acid
UR - http://www.scopus.com/inward/record.url?scp=85111894859&partnerID=8YFLogxK
U2 - 10.1002/adfm.202104441
DO - 10.1002/adfm.202104441
M3 - Article
AN - SCOPUS:85111894859
SN - 1616-301X
VL - 31
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 45
M1 - 2104441
ER -