A Bounding-Box Regression Model for Colorectal Tumor Detection in CT Images Via Two Contrary Networks

Yong Soo Kim, Seungbin Park, Hannah Kim, Seung Seob Kim, Joon Seok Lim, Sungwon Kim, Kihwan Choi, Hyunseok Seo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The field of medical image analysis has been attracted to deep learning. Various deep learning-based techniques have been introduced to aid diagnosis in the CT image of the patient. The auxiliary model for diagnosis that we proposed is to detect colorectal tumors in the CT image. The model is combined with two contrary networks of 'Detection Transformer' and 'Hourglass'. Furthermore., to improve the performance of the model., we propose an efficient connection method for two contrary models by using intermediate prediction information. A total of 3.,509 patients (193.,567 CT images) were applied to the experiment and our model outperforms the conventional models in colorectal tumor detection. Clinical Relevance - The proposed model in this paper automatically detects colorectal tumors and provides the bounding box in the CT images. Colorectal tumor is one of the common diseases. In addition, the mortality rate is so high that in-time treatment is required. The model we present here has a sensitivity (or recall) of 84.73 % for tumor detection and a precision of 88.25 % in the patient CT data. The in-slice performance of the tumor detection shows an IoU of 0.56, a sensitivity of 0.67, and a precision of 0.68.

Original languageEnglish
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3793-3796
Number of pages4
ISBN (Electronic)9781728127828
DOIs
StatePublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: 11 Jul 202215 Jul 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period11/07/2215/07/22

Fingerprint

Dive into the research topics of 'A Bounding-Box Regression Model for Colorectal Tumor Detection in CT Images Via Two Contrary Networks'. Together they form a unique fingerprint.

Cite this