TY - JOUR
T1 - A comparative study of BaTiO3/PDMS composite film and a PVDF nanofiber mat for application to flexible pressure sensors
AU - Park, Donghyuck
AU - Kim, Kwanlae
N1 - Publisher Copyright:
Copyright © The Korean Institute of Metals and Materials
PY - 2021/5
Y1 - 2021/5
N2 - Intensive research has been conducted to develop flexible piezoelectric pressure sensors, since self-powering devices are advantageous for wearable electronic applications. Recently, two types of piezoelectric devices, ceramic-PDMS composite film and PVDF nanofiber mats, have drawn attention in the research community. Piezoelectric ceramics such as BaTiO3 (BTO) and PZT exhibit outstanding piezoelectric coefficients, while PDMS provides flexibility. In contrast, a PVDF nanofiber mat simultaneously exhibits piezoelectricity and flexibility. In the present study, a comparative analysis of BTO-PDMS composite film and a PVDF nanofiber mat for application to flexible pressure sensors was carried out. First, step-wise electric poling was conducted on these two types of pressure sensors, after which the open-circuit voltage (Voc) was measured under compressive force. The 1.8 V peak-to-peak Voc was measured in a BTO-PDMS composite with a 30 wt.% BTO content that was poled by 10 kV/mm electric field for 15 min. This peak-to-peak Voc of the BTO-PDMS composite increased further to ~ 4 V when it was poled for 24 hr. Unlike the BTO-PDMS composite films, the maximum Voc (1.1 V) was measured in a PVDF nanofiber mat that did not undergo subsequent electric poling. A BTO-PDMS composite film and a PVDF nanofiber mat were fabricated, and the compressive force and strain-rate dependencies of Voc and the short-circuit current (Isc) were investigated. Overall, the Voc and Isc of the BTO-PDMS composite film exceeded those of the PVDF nanofiber mat in a force range of 1 − 25 N and frequency range of 0.5 − 2.0 Hz. However, the Voc and Isc signals from the PVDF nanofiber mat were more stable than those from the BTO-PDMS composite film due to the longer lifetime of the signals.
AB - Intensive research has been conducted to develop flexible piezoelectric pressure sensors, since self-powering devices are advantageous for wearable electronic applications. Recently, two types of piezoelectric devices, ceramic-PDMS composite film and PVDF nanofiber mats, have drawn attention in the research community. Piezoelectric ceramics such as BaTiO3 (BTO) and PZT exhibit outstanding piezoelectric coefficients, while PDMS provides flexibility. In contrast, a PVDF nanofiber mat simultaneously exhibits piezoelectricity and flexibility. In the present study, a comparative analysis of BTO-PDMS composite film and a PVDF nanofiber mat for application to flexible pressure sensors was carried out. First, step-wise electric poling was conducted on these two types of pressure sensors, after which the open-circuit voltage (Voc) was measured under compressive force. The 1.8 V peak-to-peak Voc was measured in a BTO-PDMS composite with a 30 wt.% BTO content that was poled by 10 kV/mm electric field for 15 min. This peak-to-peak Voc of the BTO-PDMS composite increased further to ~ 4 V when it was poled for 24 hr. Unlike the BTO-PDMS composite films, the maximum Voc (1.1 V) was measured in a PVDF nanofiber mat that did not undergo subsequent electric poling. A BTO-PDMS composite film and a PVDF nanofiber mat were fabricated, and the compressive force and strain-rate dependencies of Voc and the short-circuit current (Isc) were investigated. Overall, the Voc and Isc of the BTO-PDMS composite film exceeded those of the PVDF nanofiber mat in a force range of 1 − 25 N and frequency range of 0.5 − 2.0 Hz. However, the Voc and Isc signals from the PVDF nanofiber mat were more stable than those from the BTO-PDMS composite film due to the longer lifetime of the signals.
KW - Barium titanate
KW - Nanofiber
KW - PDMS
KW - Piezoelectric
KW - Pressure sensor
KW - PVDF
UR - https://www.scopus.com/pages/publications/85108335467
U2 - 10.3365/KJMM.2021.59.6.412
DO - 10.3365/KJMM.2021.59.6.412
M3 - Article
AN - SCOPUS:85108335467
SN - 1738-8228
VL - 59
SP - 412
EP - 421
JO - Journal of Korean Institute of Metals and Materials
JF - Journal of Korean Institute of Metals and Materials
IS - 6
ER -