TY - JOUR
T1 - A New Trend Pattern-Matching Method of Interactive Case-Based Reasoning for Stock Price Predictions
AU - Chun, Se Hak
AU - Jang, Jae Won
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - In this paper, we suggest a new case-based reasoning method for stock price predictions using the knowledge of traders to select similar past patterns among nearest neighbors obtained from a traditional case-based reasoning machine. Thus, this method overcomes the limitation of conventional case-based reasoning, which does not consider how to retrieve similar neighbors from previous patterns in terms of a graphical pattern. In this paper, we show how the proposed method can be used when traders find similar time series patterns among nearest cases. For this, we suggest an interactive prediction system where traders can select similar patterns with individual knowledge among automatically recommended neighbors by case-based reasoning. In this paper, we demonstrate how traders can use their knowledge to select similar patterns using a graphical interface, serving as an exemplar for the target. These concepts are investigated against the backdrop of a practical application involving the prediction of three individual stock prices, i.e., Zoom, Airbnb, and Twitter, as well as the prediction of the Dow Jones Industrial Average (DJIA). The verification of the prediction results is compared with a random walk model based on the RMSE and Hit ratio. The results show that the proposed technique is more effective than the random walk model but it does not statistically surpass the random walk model.
AB - In this paper, we suggest a new case-based reasoning method for stock price predictions using the knowledge of traders to select similar past patterns among nearest neighbors obtained from a traditional case-based reasoning machine. Thus, this method overcomes the limitation of conventional case-based reasoning, which does not consider how to retrieve similar neighbors from previous patterns in terms of a graphical pattern. In this paper, we show how the proposed method can be used when traders find similar time series patterns among nearest cases. For this, we suggest an interactive prediction system where traders can select similar patterns with individual knowledge among automatically recommended neighbors by case-based reasoning. In this paper, we demonstrate how traders can use their knowledge to select similar patterns using a graphical interface, serving as an exemplar for the target. These concepts are investigated against the backdrop of a practical application involving the prediction of three individual stock prices, i.e., Zoom, Airbnb, and Twitter, as well as the prediction of the Dow Jones Industrial Average (DJIA). The verification of the prediction results is compared with a random walk model based on the RMSE and Hit ratio. The results show that the proposed technique is more effective than the random walk model but it does not statistically surpass the random walk model.
KW - Artificial intelligence
KW - Case-based reasoning
KW - Data mining
KW - Financial prediction
KW - Knowledge discovery
KW - Learning techniques
UR - http://www.scopus.com/inward/record.url?scp=85123398832&partnerID=8YFLogxK
U2 - 10.3390/su14031366
DO - 10.3390/su14031366
M3 - Article
AN - SCOPUS:85123398832
SN - 2071-1050
VL - 14
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 3
M1 - 1366
ER -