Abnormal Situation Detection using Global Surveillance Map

Ho Chul Shin, Kiin Na

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

in this paper, we describe a method for detecting abnormal pedestrians or cars by expressing the behavioral characteristics of pedestrians on a global surveillance map in a video security system using CCTV and patrol robots. This method converts a large amount of video surveillance data into a compressed map shape format to efficiently transmit and process data. By using deep learning auto-encoder and CNN algorithm, pedestrians belonging to the abnormal category can be detected in two steps. In the case of the first-stage abnormal candidate extraction, the normal detection rate was 87.7%, the abnormal detection rate was 88.3%, and in the second stage abnormal candidate filtering, the normal detection rate was 99.8% and the abnormal detection rate was 96.5%.

Original languageEnglish
Title of host publicationICTC 2021 - 12th International Conference on ICT Convergence
Subtitle of host publicationBeyond the Pandemic Era with ICT Convergence Innovation
PublisherIEEE Computer Society
Pages769-772
Number of pages4
ISBN (Electronic)9781665423830
DOIs
StatePublished - 2021
Event12th International Conference on Information and Communication Technology Convergence, ICTC 2021 - Jeju Island, Korea, Republic of
Duration: 20 Oct 202122 Oct 2021

Publication series

NameInternational Conference on ICT Convergence
Volume2021-October
ISSN (Print)2162-1233
ISSN (Electronic)2162-1241

Conference

Conference12th International Conference on Information and Communication Technology Convergence, ICTC 2021
Country/TerritoryKorea, Republic of
CityJeju Island
Period20/10/2122/10/21

Keywords

  • Abnormal Detection
  • Mobile Robot
  • Video Surveillance

Fingerprint

Dive into the research topics of 'Abnormal Situation Detection using Global Surveillance Map'. Together they form a unique fingerprint.

Cite this