TY - GEN
T1 - An energy and GPU-computation efficient backbone network for real-time object detection
AU - Lee, Youngwan
AU - Hwang, Joong Won
AU - Lee, Sangrok
AU - Bae, Yuseok
AU - Park, Jongyoul
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/6
Y1 - 2019/6
N2 - As DenseNet conserves intermediate features with diverse receptive fields by aggregating them with dense connection, it shows good performance on the object detection task. Although feature reuse enables DenseNet to produce strong features with a small number of model parameters and FLOPs, the detector with DenseNet backbone shows rather slow speed and low energy efficiency. We find the linearly increasing input channel by dense connection leads to heavy memory access cost, which causes computation overhead and more energy consumption. To solve the inefficiency of DenseNet, we propose an energy and computation efficient architecture called VoVNet comprised of One-Shot Aggregation (OSA). The OSA not only adopts the strength of DenseNet that represents diversified features with multi receptive fields but also overcomes the inefficiency of dense connection by aggregating all features only once in the last feature maps. To validate the effectiveness of VoVNet as a backbone network, we design both lightweight and large-scale VoVNet and apply them to one-stage and two-stage object detectors. Our VoVNet based detectors outperform DenseNet based ones with 2× faster speed and the energy consumptions are reduced by 1.6× - 4.1×. In addition to DenseNet, VoVNet also outperforms widely used ResNet backbone with faster speed and better energy efficiency. In particular, the small object detection performance has been significantly improved over DenseNet and ResNet.
AB - As DenseNet conserves intermediate features with diverse receptive fields by aggregating them with dense connection, it shows good performance on the object detection task. Although feature reuse enables DenseNet to produce strong features with a small number of model parameters and FLOPs, the detector with DenseNet backbone shows rather slow speed and low energy efficiency. We find the linearly increasing input channel by dense connection leads to heavy memory access cost, which causes computation overhead and more energy consumption. To solve the inefficiency of DenseNet, we propose an energy and computation efficient architecture called VoVNet comprised of One-Shot Aggregation (OSA). The OSA not only adopts the strength of DenseNet that represents diversified features with multi receptive fields but also overcomes the inefficiency of dense connection by aggregating all features only once in the last feature maps. To validate the effectiveness of VoVNet as a backbone network, we design both lightweight and large-scale VoVNet and apply them to one-stage and two-stage object detectors. Our VoVNet based detectors outperform DenseNet based ones with 2× faster speed and the energy consumptions are reduced by 1.6× - 4.1×. In addition to DenseNet, VoVNet also outperforms widely used ResNet backbone with faster speed and better energy efficiency. In particular, the small object detection performance has been significantly improved over DenseNet and ResNet.
UR - http://www.scopus.com/inward/record.url?scp=85081018540&partnerID=8YFLogxK
U2 - 10.1109/CVPRW.2019.00103
DO - 10.1109/CVPRW.2019.00103
M3 - Conference contribution
AN - SCOPUS:85081018540
T3 - IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
SP - 752
EP - 760
BT - Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
PB - IEEE Computer Society
T2 - 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
Y2 - 16 June 2019 through 20 June 2019
ER -