An evaluation of robust controls for passive building thermal mass and mechanical thermal energy storage under uncertainty

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Passive building thermal mass and mechanical thermal energy storage (TES) are known as one of state-of-the-art demand-side control instruments. Specifically, Model-based Predictive Control (MPC) for this operation has the potential to significantly increase performance and bring economic advantages. However, due to the uncertainty in certain operating conditions in the field, its control effectiveness could be diminished and/or seriously damaged, which results in poor performance.This study pursues improvements of the control performance of both thermal inventories under uncertainty by proposing a robust MPC in which relevant uncertainty sources are compiled; therefore, it is designed to perform more stable than traditional MPCs under uncertain conditions.Uniqueness and superiority of the proposed robust demand-side controls include:. (i)Controls are developed based on the a priori uncertainty assessment, such that a systematic modeling approach for uncertainty was taken according to characteristics and classifications of uncertainty.(ii)The robust MPC reduces the variability of performance under varied and non-indigenous conditions compared to the deterministic MPC, and thus can avoid the worst case situation.

Original languageEnglish
Pages (from-to)602-623
Number of pages22
JournalApplied Energy
Volume111
DOIs
StatePublished - Nov 2013

Keywords

  • Demand control
  • MPC
  • Risk
  • TES
  • Thermal mass
  • Uncertainty

Fingerprint

Dive into the research topics of 'An evaluation of robust controls for passive building thermal mass and mechanical thermal energy storage under uncertainty'. Together they form a unique fingerprint.

Cite this