An fpga-based ecu for remote reconfiguration in automotive systems

Kwonneung Cho, Jeongeun Kim, Do Young Choi, Young Hyun Yoon, Jung Hwan Oh, Seung Eun Lee

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Growing interest in intelligent vehicles is leading automotive systems to include numerous electronic control units (ECUs) inside. As a result, efficient implementation and management of automotive systems is gaining importance. Flexible updating and reconfiguration of ECUs is one appropriate strategy for these goals. Software updates to the ECUs are expected to improve performance and bug handling, but there are limitations due to the fixed hardware circuit. By applying hardware-reconfigurable ECUs to the automotive system, patches that are not able to be handled with only software updates are enabled. In this paper, a remotely hardware-reconfigurable ECU for automotive systems is proposed. The proposed ECU is implemented with a field programmable gate array (FPGA) and microcontroller unit (MCU) to support in-system reconfiguration (ISR). The communication interface between the FPGA and MCU employs Zipwire communication for high speed and resilient communication. For the Zipwire communication, a Zipwire controller is de-signed and implemented in the FPGA. The proposed hardware-reconfigurable ECU was successfully implemented, and feasibility was demonstrated.

Original languageEnglish
Article number1309
JournalMicromachines
Volume12
Issue number11
DOIs
StatePublished - Nov 2021

Keywords

  • Automotive systems
  • Electronic control units
  • Hardware-reconfigurable ECUs
  • In-system reconfiguration
  • Zipwire controller

Fingerprint

Dive into the research topics of 'An fpga-based ecu for remote reconfiguration in automotive systems'. Together they form a unique fingerprint.

Cite this