Abstract
Consumer reviews on the web have rapidly become an important information source through which consumers can share their experiences and opinions about products and services. It is a form of text-based communication that provides new possibilities and opens vast perspectives in terms of marketing. Reading consumer reviews gives marketers an opportunity to eavesdrop on their own consumers. This paper examines consumer reviews of three different competitive automobile brands and analyzes the advantages and disadvantages of each vehicle using text mining and association rule methods. The data were collected from an online resource for automotive information, Edmunds.com, with a scraping tool "ParseHub" and then processed in R software for statistical computing and graphics. The paper provides detailed insights into the superior and problematic sides of each brand and into consumers' perceptions of automobiles and highlights differences between satisfied and unsatisfied groups regarding the best and worst features of the brands.
Original language | English |
---|---|
Article number | 1611 |
Journal | Sustainability (Switzerland) |
Volume | 11 |
Issue number | 6 |
DOIs | |
State | Published - 2019 |
Keywords
- Association rule
- Big data analytics
- Car review
- Text mining