Abstract
Developing methodologies for performing multi-omics with one sample has been challenging in zebrafish toxicology; however, related studies are lacking. A new strategy for the simultaneous analysis of metabolomics and lipidomics in zebrafish embryos was proposed and applied to explore the neurotoxicity mechanisms of perfluorooctanesulfonate (PFOS). Metabolite and lipid profiled simultaneously with methyl tert-butyl ether (MTBE) were compared with individual results from other extraction solvents. Behavioral alterations were measured after the zebrafish embryos were exposed to 0.1–20 μM PFOS for 5 days. The metabolite-lipid profiles of the MTBE-based strategy analyzed with optimized larval pooling size of 30 were comparable to those of other extraction solvents, indicating the feasibility and efficiency of MTBE-based multi-omics analysis. Many metabolites and lipids, which were enriched more than those previously reported, completed the toxicity pathways involved in energy metabolism and sphingolipids, improving our understanding of PFOS-induced neurotoxicity mechanism manifested by increased movement under dark conditions. Our novel MTBE-based strategy enabled the multi-omics analysis of one sample with minimal use of zebrafish embryos, thereby improving data reliability on changes in multi-layered biomolecules. This study will advance multi-omics technologies that are critical to elucidating the toxicity mechanisms of toxic chemicals including per- and polyfluoroalkyl substances.
Original language | English |
---|---|
Article number | 136712 |
Journal | Journal of Hazardous Materials |
Volume | 484 |
DOIs | |
State | Published - 15 Feb 2025 |
Keywords
- Biomarker
- MTBE
- Molecular mechanism
- Multi-omics
- PFAS
- Sphingolipid