Automatic 2D floorplan CAD generation from 3D point clouds

Uuganbayar gankhuyag, Ji Hyeong Han

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

In the architecture, engineering, and construction (AEC) industry, creating an indoor model of existing buildings has been a challenging task since the introduction of building information modeling (BIM). Because the process of BIM is primarily manual and implies a high possibility of error, the automated creation of indoor models remains an ongoing research. In this paper, we propose a fully automated method to g+enerate 2D floorplan computer-aided designs (CADs) from 3D point clouds. The proposed method consists of two main parts. The first is to detect planes in buildings, such as walls, floors, and ceilings, from unstructured 3D point clouds and to classify them based on the Manhattan-World (MW) assumption. The second is to generate 3D BIM in the industry foundation classes (IFC) format and a 2D floorplan CAD using the proposed line-detection algorithm. We experimented the proposed method on 3D point cloud data from a university building, residential houses, and apartments and evaluated the g+eometric quality of a wall reconstruction. We also offer the source code for the proposed method on GitHub.

Original languageEnglish
Article number2817
JournalApplied Sciences (Switzerland)
Volume10
Issue number8
DOIs
StatePublished - 1 Apr 2020

Keywords

  • 2D floorplan CAD
  • 3D point clouds
  • 3D reconstruction
  • Building information modeling (BIM)

Fingerprint

Dive into the research topics of 'Automatic 2D floorplan CAD generation from 3D point clouds'. Together they form a unique fingerprint.

Cite this