TY - JOUR
T1 - Carbon cloth modified by direct growth of nitrogen-doped carbon nanofibers and its utilization as electrode for zero gap flow batteries
AU - Jang, Jooyoung
AU - Shin, Mingyu
AU - Kwon, Yongchai
AU - Jo, Changshin
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/2/1
Y1 - 2024/2/1
N2 - The synthetic procedure and characterization of carbon nanofibers (CNFs) grown on carbon cloth (CC) are explored in this study, with a focus on their potential application as electrodes in vanadium redox flow batteries (VRFBs). CC offers an attractive platform for surface modification owing to its conductive properties and three-dimensional architecture, while the N-doped CNFs formed by nitrogen (N) rich composition of melamine precursor enhance wettability of electrolyte and redox reactivity of vanadium ions. Electrochemical assessments reveal that NCC electrodes significantly increase voltage efficiency (VE) and capacity retention in VRFBs compared to bare CC (BCC) electrodes. Notably, NCC demonstrates a VE of 65.9%, surpassing the 55.9% of BCC electrodes. Additionally, NCC maintains superior capacity retention under varying current densities, a crucial factor for VRFBs. Long-term stability tests over 1000 cycles highlight the NCC electrode's durability, with only a minimal decrease in VE. Post-experiment analysis confirms the structural integrity of the CNFs on the CC electrodes, validating their resilience in VRFB operations. In summary, the study introduces a novel approach for fabricating N-doped CNFs on CC, resulting in electrodes that significantly boost VRFB performance in terms of efficiency, capacity retention, and stability, marking a notable advancement in flow battery technology.
AB - The synthetic procedure and characterization of carbon nanofibers (CNFs) grown on carbon cloth (CC) are explored in this study, with a focus on their potential application as electrodes in vanadium redox flow batteries (VRFBs). CC offers an attractive platform for surface modification owing to its conductive properties and three-dimensional architecture, while the N-doped CNFs formed by nitrogen (N) rich composition of melamine precursor enhance wettability of electrolyte and redox reactivity of vanadium ions. Electrochemical assessments reveal that NCC electrodes significantly increase voltage efficiency (VE) and capacity retention in VRFBs compared to bare CC (BCC) electrodes. Notably, NCC demonstrates a VE of 65.9%, surpassing the 55.9% of BCC electrodes. Additionally, NCC maintains superior capacity retention under varying current densities, a crucial factor for VRFBs. Long-term stability tests over 1000 cycles highlight the NCC electrode's durability, with only a minimal decrease in VE. Post-experiment analysis confirms the structural integrity of the CNFs on the CC electrodes, validating their resilience in VRFB operations. In summary, the study introduces a novel approach for fabricating N-doped CNFs on CC, resulting in electrodes that significantly boost VRFB performance in terms of efficiency, capacity retention, and stability, marking a notable advancement in flow battery technology.
KW - Carbon cloth
KW - Carbon nanofiber
KW - Melamine
KW - Solid-to-gas pyrolysis
KW - Zero-gap vanadium flow battery system
UR - http://www.scopus.com/inward/record.url?scp=85182437276&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.148644
DO - 10.1016/j.cej.2024.148644
M3 - Article
AN - SCOPUS:85182437276
SN - 1385-8947
VL - 481
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 148644
ER -