Centrifuge modeling of disconnected piled raft using vertical pushover tests

Heon Joon Park, Kil Wan Ko, Young Hun Song, Myung Jun Song, Seokwoo Jin, Jeong Gon Ha, Dong Soo Kim

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

A disconnected piled raft (DPR) foundation has been introduced as an effective pile design to reduce the vertical loading experienced by the pile. The characterization of DPRs has focused on the load transfer mechanism, foundation and soil settlement, bearing capacity, load distribution, and bending moment of the piles. DPR piles can act to increase the bearing capacity of the ground, and DPRs can reduce settlement while securing the bearing capacity. In this study, centrifuge model tests are performed to simulate the static behavior of DPRs under actual stress conditions. The behaviors of the DPR foundation for axial load, axial load distribution among the piles, and bending moment are compared to those of the connected piled raft foundation to understand the complex behaviors of DPRs. The centrifuge test results show that DPRs help reduce the pile axial load and bending moment during vertical loading. In addition, DPRs show smaller vertical settlement than shallow foundations. Therefore, we confirm that DPRs can be applied in foundation design as settlement reducers.

Original languageEnglish
Pages (from-to)2637-2648
Number of pages12
JournalActa Geotechnica
Volume15
Issue number9
DOIs
StatePublished - 1 Sep 2020

Keywords

  • Centrifuge test
  • Disconnected piled raft
  • Load transfer mechanism
  • Soil-foundation-structure interaction
  • Vertical static loading

Fingerprint

Dive into the research topics of 'Centrifuge modeling of disconnected piled raft using vertical pushover tests'. Together they form a unique fingerprint.

Cite this