TY - JOUR
T1 - Clean-In-Place (CIP) wastewater management using nanofiltration (NF)-forward osmosis (FO)-direct contact membrane distillation (DCMD)
T2 - Effects of draw salt
AU - Kim, Woo Ju
AU - Park, Hyeon Woo
AU - Heldman, Dennis R.
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/2
Y1 - 2024/2
N2 - A substantial amount of water is being used during Clean-in-Place (CIP) operation, and is transformed into wastewater that can cause eutrophication to the nearby ecosystem. The present study proposed the Nanofiltration (NF) – Forward Osmosis (FO) – Direct Contact Membrane Distillation (DCMD) to recover the cleaning agents and reclaim freshwater from the model CIP wastewater. NF steps were suggested as prefiltration steps to remove organic compounds from the CIP wastewater. NF steps reduced the lactose and protein contents by 100 % and 95.6 %, respectively. The permeates from NF steps were further managed by the integrated FO-DCMD system. Several draw salts such as NaCl, KCl, MgCl2, and CaCl2 were compared to investigate the influence on FO and DCMD performance. It was found that monovalent salts (NaCl and KCl) outperformed the divalent salts (MgCl2 and CaCl2) in terms of water flux for both FO and DCMD. This can be attributed to the lower viscosity and higher mass transfer coefficient. In addition, the replenishment costs of each salt were evaluated since salts loss occurred during FO and DCMD operation. The cost evaluation revealed that NaCl is most the cheapest salts per reclaimed water. All of this observation indicates that NaCl is preferred in terms of water flux and replenishment cost. The NF permeate kept concentrated using the integrated FO-DCMD or single FO with 2 M of NaCl. Compared to a single FO that showed a consistent decline in draw solution concentration, FO-DCMD could maintain the concentration of the draw solution. Despite the constant concentration, flux decline of FO was observed due to fouling formation caused by the high-temperature operation. However, the FO-DCMD could accomplish the recovery of pure water. Finally, the cleaning agents recovered by the NF-FO-DCMD showed the cleaning efficacy comparable to the fresh NaOH. These results suggest the potential of the proposed system to manage the CIP wastewater.
AB - A substantial amount of water is being used during Clean-in-Place (CIP) operation, and is transformed into wastewater that can cause eutrophication to the nearby ecosystem. The present study proposed the Nanofiltration (NF) – Forward Osmosis (FO) – Direct Contact Membrane Distillation (DCMD) to recover the cleaning agents and reclaim freshwater from the model CIP wastewater. NF steps were suggested as prefiltration steps to remove organic compounds from the CIP wastewater. NF steps reduced the lactose and protein contents by 100 % and 95.6 %, respectively. The permeates from NF steps were further managed by the integrated FO-DCMD system. Several draw salts such as NaCl, KCl, MgCl2, and CaCl2 were compared to investigate the influence on FO and DCMD performance. It was found that monovalent salts (NaCl and KCl) outperformed the divalent salts (MgCl2 and CaCl2) in terms of water flux for both FO and DCMD. This can be attributed to the lower viscosity and higher mass transfer coefficient. In addition, the replenishment costs of each salt were evaluated since salts loss occurred during FO and DCMD operation. The cost evaluation revealed that NaCl is most the cheapest salts per reclaimed water. All of this observation indicates that NaCl is preferred in terms of water flux and replenishment cost. The NF permeate kept concentrated using the integrated FO-DCMD or single FO with 2 M of NaCl. Compared to a single FO that showed a consistent decline in draw solution concentration, FO-DCMD could maintain the concentration of the draw solution. Despite the constant concentration, flux decline of FO was observed due to fouling formation caused by the high-temperature operation. However, the FO-DCMD could accomplish the recovery of pure water. Finally, the cleaning agents recovered by the NF-FO-DCMD showed the cleaning efficacy comparable to the fresh NaOH. These results suggest the potential of the proposed system to manage the CIP wastewater.
KW - Clean-in-Place
KW - Direct contact membrane distillation
KW - FO-DCMD
KW - Forward osmosis
KW - Wastewater management
UR - http://www.scopus.com/inward/record.url?scp=85182502138&partnerID=8YFLogxK
U2 - 10.1016/j.foodres.2024.113939
DO - 10.1016/j.foodres.2024.113939
M3 - Article
C2 - 38309867
AN - SCOPUS:85182502138
SN - 0963-9969
VL - 178
JO - Food Research International
JF - Food Research International
M1 - 113939
ER -