TY - GEN
T1 - Coalescence pressure evaluation of multiple through-wall cracks in steam generator tube using elastic-plastic finite element analyses
AU - Hong, Jin Won
AU - Choi, Jae Boong
AU - Huh, Nam Su
PY - 2015
Y1 - 2015
N2 - During an in-service inspection, if multiple cracks have been found in a nuclear component, the crack interaction effect due to adjacent cracks should be taken into account to characterize the detected multiple cracks into equivalent single combined crack or independent single crack. However, there must be many factors to be considered to quantify crack interaction effect, many experimental and numerical works should be made to propose robust guidelines on crack interaction effect depending on material characteristics of interest. Although many works have been made during the past few years to evaluate crack interaction effect of steam generator tubes with multiple cracks, the robust guidelines are still lacking. In this study, systematic 3-dimensional (3D) elastic-plastic finite element (FE) analyses are performed for steam generator tubes with multiple through-wall cracks. As for geometries of multiple through-wall cracks, four different cases are considered; axial collinear cracks, axial parallel cracks, circumferential collinear cracks, and circumferential parallel cracks. The geometric variables affecting the Pc (coalescence pressure), i.e. crack length and distance between multiple cracks, are systematically varied in the present study. Based on the coalescence pressure evaluation model proposed by authors in the previous study and the present FE results, the Pc of steam generator tubes with multiple cracks are investigated..
AB - During an in-service inspection, if multiple cracks have been found in a nuclear component, the crack interaction effect due to adjacent cracks should be taken into account to characterize the detected multiple cracks into equivalent single combined crack or independent single crack. However, there must be many factors to be considered to quantify crack interaction effect, many experimental and numerical works should be made to propose robust guidelines on crack interaction effect depending on material characteristics of interest. Although many works have been made during the past few years to evaluate crack interaction effect of steam generator tubes with multiple cracks, the robust guidelines are still lacking. In this study, systematic 3-dimensional (3D) elastic-plastic finite element (FE) analyses are performed for steam generator tubes with multiple through-wall cracks. As for geometries of multiple through-wall cracks, four different cases are considered; axial collinear cracks, axial parallel cracks, circumferential collinear cracks, and circumferential parallel cracks. The geometric variables affecting the Pc (coalescence pressure), i.e. crack length and distance between multiple cracks, are systematically varied in the present study. Based on the coalescence pressure evaluation model proposed by authors in the previous study and the present FE results, the Pc of steam generator tubes with multiple cracks are investigated..
UR - http://www.scopus.com/inward/record.url?scp=84961316715&partnerID=8YFLogxK
U2 - 10.1115/PVP2015-45451
DO - 10.1115/PVP2015-45451
M3 - Conference contribution
AN - SCOPUS:84961316715
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - Codes and Standards
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2015 Pressure Vessels and Piping Conference, PVP 2015
Y2 - 19 July 2015 through 23 July 2015
ER -