Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink

Thomas Novlan, Jeffrey G. Andrews, Illsoo Sohn, Radha Krishna Ganti, Arunabha Ghosh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

168 Scopus citations

Abstract

Fractional frequency reuse (FFR) is an interference coordination technique well-suited to OFDMA based wireless networks wherein cells are partitioned into spatial regions with different frequency reuse factors. This work focuses on evaluating the two main types of FFR deployments: Strict FFR and Soft Frequency Reuse (SFR). Relevant metrics are discussed, including outage probability, network throughput, spectral efficiency, and average cell-edge user SINR. In addition to analytical expressions for outage probability, system simulations are used to compare Strict FFR and SFR with universal frequency reuse based on a typical OFDMA deployment and uniformly distributed users. Based on the analysis and numerical results, system design guidelines and a detailed picture of the tradeoffs associated with the FFR systems are presented, showing that Strict FFR provides the greatest overall network throughput and highest cell-edge user SINR, while SFR balances the requirements of interference reduction and resource efficiency.

Original languageEnglish
Title of host publication2010 IEEE Global Telecommunications Conference, GLOBECOM 2010
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781424456383
DOIs
StatePublished - 2010
Event53rd IEEE Global Communications Conference, GLOBECOM 2010 - Miami, United States
Duration: 6 Dec 201010 Dec 2010

Publication series

NameGLOBECOM - IEEE Global Telecommunications Conference

Conference

Conference53rd IEEE Global Communications Conference, GLOBECOM 2010
Country/TerritoryUnited States
CityMiami
Period6/12/1010/12/10

Fingerprint

Dive into the research topics of 'Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink'. Together they form a unique fingerprint.

Cite this