TY - JOUR
T1 - Comprehensive parametric analyses on the mechanical performance of 3D printed continuous carbon fibre reinforced plastic
AU - Park, Georak
AU - Cho, Nak Kyun
AU - Lee, Yeajin
AU - Kim, Chung Soo
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2024/2/1
Y1 - 2024/2/1
N2 - This study presents a novel in-house modelling method called “Fibre Path Generator” and comprehensive parametric analyses on the mechanical performance of carbon fibre reinforced plastic (CFRP) with the fibre path along the principal stress direction, using both finite element (FE) simulations and experiments. The reliability of the developed CFRP model is validated through the fabrication of open-hole tensile test specimens using a co-extrusion composite 3D-printer, which demonstrated a highly compatible maximum tensile load with an error less than 3%. A comparative analysis is conducted to assess the mechanical performance of the CFRP specimen with principal stress fibre placement, which result shows that the maximum tensile load achieved is 172.84% higher than a CFRP model with uniaxial fibre placement. Furthermore, comprehensive parametric studies are carried out, varying the carbon fibre location and width-to-depth (w/D) ratio of the open-hole specimen, in order to evaluate the mechanical performance under the tensile loading. This study results provide useful insights to engineers when enhancing the mechanical performance of CFRP composite structures with effective continuous fibre placement.
AB - This study presents a novel in-house modelling method called “Fibre Path Generator” and comprehensive parametric analyses on the mechanical performance of carbon fibre reinforced plastic (CFRP) with the fibre path along the principal stress direction, using both finite element (FE) simulations and experiments. The reliability of the developed CFRP model is validated through the fabrication of open-hole tensile test specimens using a co-extrusion composite 3D-printer, which demonstrated a highly compatible maximum tensile load with an error less than 3%. A comparative analysis is conducted to assess the mechanical performance of the CFRP specimen with principal stress fibre placement, which result shows that the maximum tensile load achieved is 172.84% higher than a CFRP model with uniaxial fibre placement. Furthermore, comprehensive parametric studies are carried out, varying the carbon fibre location and width-to-depth (w/D) ratio of the open-hole specimen, in order to evaluate the mechanical performance under the tensile loading. This study results provide useful insights to engineers when enhancing the mechanical performance of CFRP composite structures with effective continuous fibre placement.
KW - Co-extrusion composite 3D-printer
KW - Continuous carbon fibre reinforced plastic
KW - Mechanical performance
KW - Principal stress
UR - http://www.scopus.com/inward/record.url?scp=85180402181&partnerID=8YFLogxK
U2 - 10.1016/j.compstruct.2023.117804
DO - 10.1016/j.compstruct.2023.117804
M3 - Article
AN - SCOPUS:85180402181
SN - 0263-8223
VL - 329
JO - Composite Structures
JF - Composite Structures
M1 - 117804
ER -