TY - GEN
T1 - Conceptual design of sulfur-iodine hydrogen production cycle of Korea institute of energy research
AU - Cho, Wonchul
AU - Bae, Kikwang
AU - Park, Chusik
AU - Kim, Changhee
AU - Kang, Kyoungsoo
PY - 2009
Y1 - 2009
N2 - The Sulfur-Iodine thermochemical cycle offers a promising approach to the high efficiency production of hydrogen from nuclear power. Several SI cycles have been proposed by several research group. General Atomic (GA) studied I2 separation by extractive distillation using H3PO4. RWTH introduced the concept of reactive distillation. In this process, HIx stream coming from the Bunsen reaction is fed to the column. And HIx is distillated and decomposed at the same time to obtain hydrogen. Korea Institute of Energy Research (KIER) and Japan Atomic Energy Agency (JAEA) concentrate HIx using electro-dialysis cell and concentrated HIx is fed to the column to produce HI vapor, which is decomposed to produce hydrogen. HI was separated from HIx solution by an extractive distillation using H3PO4. However, a large amount of electric energy was required to recycle H3PO4. Most of SI processes have difficulties producing hydrogen because it has excess iodine in HI decomposition Section. SI cycle with electro-dialysis cell uses membrane reactor to separate H2 and HIx. The current state of the membrane technology is not compatible with the process needs. This study examined several cases of flowsheets to overcome the problems mentioned above. The flowsheets were revised by adding the iodine separator and excluding membrane reactor. The thermal efficiency of SI process was analyzed using the revised flowsheet.
AB - The Sulfur-Iodine thermochemical cycle offers a promising approach to the high efficiency production of hydrogen from nuclear power. Several SI cycles have been proposed by several research group. General Atomic (GA) studied I2 separation by extractive distillation using H3PO4. RWTH introduced the concept of reactive distillation. In this process, HIx stream coming from the Bunsen reaction is fed to the column. And HIx is distillated and decomposed at the same time to obtain hydrogen. Korea Institute of Energy Research (KIER) and Japan Atomic Energy Agency (JAEA) concentrate HIx using electro-dialysis cell and concentrated HIx is fed to the column to produce HI vapor, which is decomposed to produce hydrogen. HI was separated from HIx solution by an extractive distillation using H3PO4. However, a large amount of electric energy was required to recycle H3PO4. Most of SI processes have difficulties producing hydrogen because it has excess iodine in HI decomposition Section. SI cycle with electro-dialysis cell uses membrane reactor to separate H2 and HIx. The current state of the membrane technology is not compatible with the process needs. This study examined several cases of flowsheets to overcome the problems mentioned above. The flowsheets were revised by adding the iodine separator and excluding membrane reactor. The thermal efficiency of SI process was analyzed using the revised flowsheet.
UR - https://www.scopus.com/pages/publications/70349900340
M3 - Conference contribution
AN - SCOPUS:70349900340
SN - 9780791848548
T3 - 2008 Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, HTR 2008
SP - 559
EP - 570
BT - 2008 Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, HTR 2008
T2 - 2008 4th International Topical Meeting on High Temperature Reactor Technology, HTR 2008
Y2 - 28 September 2008 through 1 October 2008
ER -