Convolution and analytic Fourier-Feynman transforms over paths in abstract Wiener space

K. S. Chang, B. S. Kim, T. S. Song, I. Yoo

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

In this paper, we define an Lp analytic Fourier-Feynman transform on C0(B), the space of abstract Wiener space valued continuous functions on [0, T]. We establish existence theorems and inverse transform theorems of this transform for some classes of cylinder type functions on C0(B) having the form F(x) =f((h1, x(s1))̃, ..., (hm, x(Sn))̃). Moreover we present various relationships involving convolution and the transforms.

Original languageEnglish
Pages (from-to)345-362
Number of pages18
JournalIntegral Transforms and Special Functions
Volume13
Issue number4
DOIs
StatePublished - Aug 2002

Keywords

  • Abstract Wiener space
  • Analytic Feynman integral
  • Convolution
  • Fourier-Feynman transform

Fingerprint

Dive into the research topics of 'Convolution and analytic Fourier-Feynman transforms over paths in abstract Wiener space'. Together they form a unique fingerprint.

Cite this