TY - JOUR
T1 - Copper-oxide spinel absorber coatings for high-temperature concentrated solar power systems
AU - Karas, Dale E.
AU - Byun, Jongmin
AU - Moon, Jaeyun
AU - Jose, Cilla
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - Concentrated Solar Power (CSP), a promising renewable energy technology, involves methods to concentrate the sun's energy onto receiver systems that generate steam, activate turbines, and consequently generate electrical power. To ensure CSP technologies remain cost-competitive, absorber coatings on CSP receiver systems require performance enhancements for increasing solar-thermal energy conversion efficiency. In this work, black metal-oxide nanoparticles comprising copper-cobalt oxides (CuxCo3−xO4) and copper-manganese oxides (CuxMn3−xO4) are synthesized for solar absorptive potential by hydrothermal syntheses – selected for low-cost, energy-efficient fabrication capable for bulk manufacturability. The material is deposited onto high-temperature, durable Inconel substrates by a flexible spray-coating method, and characterization is performed by Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS), and X-Ray Powder Diffraction (XRD) analyses, as well as measurements to gauge thermal performance. High temperature stability of a model solar receiver surface using these synthesized materials are assessed by comparing spectral reflectance and a figure-of-merit efficiency metric before and after high temperature exposure beyond 1000 h. To extend spectrally-selective absorbance capability, the coating surfaces are geometrically-textured using sacrificial polymer beads that are jointly implemented in the spray-coating process. This study ultimately showcases materials produced with high figure-of-merit conversion efficiency, demonstrating solar absorber coatings capable of interfacing with next-generation CSP receiver systems.
AB - Concentrated Solar Power (CSP), a promising renewable energy technology, involves methods to concentrate the sun's energy onto receiver systems that generate steam, activate turbines, and consequently generate electrical power. To ensure CSP technologies remain cost-competitive, absorber coatings on CSP receiver systems require performance enhancements for increasing solar-thermal energy conversion efficiency. In this work, black metal-oxide nanoparticles comprising copper-cobalt oxides (CuxCo3−xO4) and copper-manganese oxides (CuxMn3−xO4) are synthesized for solar absorptive potential by hydrothermal syntheses – selected for low-cost, energy-efficient fabrication capable for bulk manufacturability. The material is deposited onto high-temperature, durable Inconel substrates by a flexible spray-coating method, and characterization is performed by Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS), and X-Ray Powder Diffraction (XRD) analyses, as well as measurements to gauge thermal performance. High temperature stability of a model solar receiver surface using these synthesized materials are assessed by comparing spectral reflectance and a figure-of-merit efficiency metric before and after high temperature exposure beyond 1000 h. To extend spectrally-selective absorbance capability, the coating surfaces are geometrically-textured using sacrificial polymer beads that are jointly implemented in the spray-coating process. This study ultimately showcases materials produced with high figure-of-merit conversion efficiency, demonstrating solar absorber coatings capable of interfacing with next-generation CSP receiver systems.
KW - Absorber coating
KW - Concentrated solar power
KW - Copper oxide
KW - CSP
KW - High temperature
UR - http://www.scopus.com/inward/record.url?scp=85045099429&partnerID=8YFLogxK
U2 - 10.1016/j.solmat.2018.03.025
DO - 10.1016/j.solmat.2018.03.025
M3 - Article
AN - SCOPUS:85045099429
SN - 0927-0248
VL - 182
SP - 321
EP - 330
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
ER -