Decentralized Power Flow Control Strategy Using Transition Operations of DC-Bus Voltage for Detection of Uncertain DC Microgrid Operations

Muhammad Alif Miraj Jabbar, Dat Thanh Tran, Kyeong Hwa Kim

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

To enhance the reliability and flexibility of DC microgrids (DCMGs), this paper presents a decentralized power flow control strategy (PFCS) by using the transition operation modes. The transition operation modes are introduced as an effective communication method among power units, eliminating the use of additional digital communication links (DCLs) for the purpose of ensuring the power balance as well as the voltage regulation even under uncertain conditions. During the transition operation modes, the power unit which transmits the information shifts the DC-link voltage level, and the power unit which receives the information continuously monitors the DC-link voltage with predetermined time. When uncertain conditions occur in a particular power unit, this power unit triggers the transition operation modes to send this information to all power units in the DCMG system. The proposed PFCS can maintain the DC-link voltage at the nominal value for steady-state conditions both in the grid-connected mode and islanded mode. Moreover, the proposed PFCS significantly enhances the overall reliability of the decentralized DCMG system by effectively addressing several uncertainties stemmed from electricity price fluctuations, grid availability, battery state-of-charge (SOC) levels, and wind power variations. The scalability of the DCMG system is also demonstrated by incorporating an electric vehicle (EV) unit as an additional energy storage system (ESS). The EV unit seamlessly cooperates with the existing battery unit, functioning as additional ESS to regulate the DC-link voltage when the battery SOC level is low. Simulation and experimentation results under various conditions demonstrate the effectiveness of the proposed PFCS.

Original languageEnglish
Article number11635
JournalSustainability (Switzerland)
Volume15
Issue number15
DOIs
StatePublished - Aug 2023

Keywords

  • DC microgrid
  • decentralized control architecture
  • detection of uncertain microgrid operations
  • power flow control
  • transition mode operations

Fingerprint

Dive into the research topics of 'Decentralized Power Flow Control Strategy Using Transition Operations of DC-Bus Voltage for Detection of Uncertain DC Microgrid Operations'. Together they form a unique fingerprint.

Cite this