Deep Geometric Moments Promote Shape Consistency in Text-to-3D Generation

Utkarsh Nath, Rajeev Goel, Eun Som Jeon, Changhoon Kim, Kyle Min, Yezhou Yang, Yingzhen Yang, Pavan Turaga

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

To address the data scarcity associated with 3D assets, 2D-lifting techniques such as Score Distillation Sampling (SDS) have become a widely adopted practice in text-to-3D generation pipelines. However, the diffusion models used in these techniques are prone to viewpoint bias and thus lead to geometric inconsistencies such as the Janus problem. To counter this, we introduce MT3D, a text-to-3D generative model that leverages a high-fidelity 3D object to overcome viewpoint bias and explicitly infuse geometric understanding into the generation pipeline. Firstly, we employ depth maps derived from a high-quality 3D model as control signals to guarantee that the generated 2D images preserve the funda-mental shape and structure, thereby reducing the inherent viewpoint bias. Next, we utilize deep geometric moments to ensure geometric consistency in the 3D representation explicitly. By incorporating geometric details from a 3D asset, MT3D enables the creation of diverse and geometri-cally consistent objects, thereby improving the quality and usability of our 3D representations. Project page and code: https://moment-3d.github.io/

Original languageEnglish
Title of host publicationProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4331-4341
Number of pages11
ISBN (Electronic)9798331510831
DOIs
StatePublished - 2025
Event2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025 - Tucson, United States
Duration: 28 Feb 20254 Mar 2025

Publication series

NameProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025

Conference

Conference2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
Country/TerritoryUnited States
CityTucson
Period28/02/254/03/25

Keywords

  • geometric consistency
  • geometric moments
  • text-to-3d generation

Fingerprint

Dive into the research topics of 'Deep Geometric Moments Promote Shape Consistency in Text-to-3D Generation'. Together they form a unique fingerprint.

Cite this