TY - JOUR
T1 - Deep recurrent neural network-based identification of precursor microRNAs
AU - Park, Seunghyun
AU - Min, Seonwoo
AU - Choi, Hyun Soo
AU - Yoon, Sungroh
N1 - Publisher Copyright:
© 2017 Neural information processing systems foundation. All rights reserved.
PY - 2017
Y1 - 2017
N2 - MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) which play key roles in post-transcriptional gene regulation. Direct identification of mature miRNAs is infeasible due to their short lengths, and researchers instead aim at identifying precursor miRNAs (pre-miRNAs). Many of the known pre-miRNAs have distinctive stem-loop secondary structure, and structure-based filtering is usually the first step to predict the possibility of a given sequence being a pre-miRNA. To identify new pre-miRNAs that often have non-canonical structure, however, we need to consider additional features other than structure. To obtain such additional characteristics, existing computational methods rely on manual feature extraction, which inevitably limits the efficiency, robustness, and generalization of computational identification. To address the limitations of existing approaches, we propose a pre-miRNA identification method that incorporates (1) a deep recurrent neural network (RNN) for automated feature learning and classification, (2) multimodal architecture for seamless integration of prior knowledge (secondary structure), (3) an attention mechanism for improving long-term dependence modeling, and (4) an RNN-based class activation mapping for highlighting the learned representations that can contrast pre-miRNAs and non-pre-miRNAs. In our experiments with recent benchmarks, the proposed approach outperformed the compared state-of-the-art alternatives in terms of various performance metrics.
AB - MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) which play key roles in post-transcriptional gene regulation. Direct identification of mature miRNAs is infeasible due to their short lengths, and researchers instead aim at identifying precursor miRNAs (pre-miRNAs). Many of the known pre-miRNAs have distinctive stem-loop secondary structure, and structure-based filtering is usually the first step to predict the possibility of a given sequence being a pre-miRNA. To identify new pre-miRNAs that often have non-canonical structure, however, we need to consider additional features other than structure. To obtain such additional characteristics, existing computational methods rely on manual feature extraction, which inevitably limits the efficiency, robustness, and generalization of computational identification. To address the limitations of existing approaches, we propose a pre-miRNA identification method that incorporates (1) a deep recurrent neural network (RNN) for automated feature learning and classification, (2) multimodal architecture for seamless integration of prior knowledge (secondary structure), (3) an attention mechanism for improving long-term dependence modeling, and (4) an RNN-based class activation mapping for highlighting the learned representations that can contrast pre-miRNAs and non-pre-miRNAs. In our experiments with recent benchmarks, the proposed approach outperformed the compared state-of-the-art alternatives in terms of various performance metrics.
UR - http://www.scopus.com/inward/record.url?scp=85047003917&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85047003917
SN - 1049-5258
VL - 2017-December
SP - 2892
EP - 2901
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 31st Annual Conference on Neural Information Processing Systems, NIPS 2017
Y2 - 4 December 2017 through 9 December 2017
ER -