Design of Static Output Feedback Controllers for an Active Suspension System

Yonghwan Jeong, Youngil Sohn, Sehyun Chang, Seongjin Yim

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

This paper presents a method by which to design linear quadratic (LQ) static output feedback (SOF) controllers with a 2-DOF quarter-car model for an active suspension system. Generally, it is challenging to implement linear quadratic regulator (LQR), designed with a full-car model, in actual vehicles because doing so requires 14 state variables to be precisely measured. For this reason, LQR has been designed with a quarter-car model and then applied to a full-car model. Although this requires far fewer state variables, some of them are still difficult to measure. Thus, it is necessary to design a LQ SOF controller which uses available sensor signals that are relatively easily measured in real vehicles. In this paper, a LQ SOF controller is designed with a quarter-car model and applied to a full-car model for ride comfort. To design the controller, an optimization problem is formulated and solved by a heuristic optimization method. A frequency domain analysis and a simulation with a simulation package show that the proposed LQ SOF controllers effectively improve the ride comfort with an active suspension system.

Original languageEnglish
Pages (from-to)26948-26964
Number of pages17
JournalIEEE Access
Volume10
DOIs
StatePublished - 2022

Keywords

  • 2-DOF quarter-car model
  • 7-DOF full-car model
  • Active suspension control
  • linear quadratic regulator
  • static output feedback control

Fingerprint

Dive into the research topics of 'Design of Static Output Feedback Controllers for an Active Suspension System'. Together they form a unique fingerprint.

Cite this