TY - JOUR
T1 - Development of a glucose oxidase-based biocatalyst adopting both physical entrapment and crosslinking, and its use in biofuel cells
AU - Chung, Yongjin
AU - Ahn, Yeonjoo
AU - Christwardana, Marcelinus
AU - Kim, Hansung
AU - Kwon, Yongchai
N1 - Publisher Copyright:
© 2016 The Royal Society of Chemistry.
PY - 2016/5/7
Y1 - 2016/5/7
N2 - New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.
AB - New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.
UR - http://www.scopus.com/inward/record.url?scp=84973340667&partnerID=8YFLogxK
U2 - 10.1039/c6nr00902f
DO - 10.1039/c6nr00902f
M3 - Article
C2 - 27074999
AN - SCOPUS:84973340667
SN - 2040-3364
VL - 8
SP - 9201
EP - 9210
JO - Nanoscale
JF - Nanoscale
IS - 17
ER -