TY - JOUR
T1 - Development of a synthetic cumate-inducible gene expression system for Bacillus
AU - Seo, Seung Oh
AU - Schmidt-Dannert, Claudia
N1 - Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - A novel inducible gene expression system using p-isopropyl benzoate (cumate) as an inducer was developed for the industrial production hosts, Bacillus subtilis and Bacillus megaterium. Cumate is non-toxic to the host, inexpensive, and carbon source-independent inducer which provides an economical option for large-scale production of valuable proteins and chemicals from Bacillus strains. The synthetic cumate-inducible system was constructed by combining the strong constitutive Bacillus promoter Pveg with regulatory elements of the Pseudomonas putida, CymR repressor, and its operator sequence CuO. The designed expression cassette containing a sfGFP reporter under the cumate-inducible promoter was assembled into a Bacillus-E. coli shuttle and gene expression investigated in the two Bacillus strains. Characterization of gene expression levels, expression kinetics, and dose-response to cumate inducer concentration confirmed high-level, but tightly controlled GFP reporter expression in tunable, cumate concentration-dependent manner. Unexpectedly, this expression system works equally well for Escherichia coli, resulting in a platform that can be used both in gram-positive and gram-negative expression host. Its tight regulation and controllable expression makes this system useful for metabolic engineering, synthetic biology studies as well industrial protein production.
AB - A novel inducible gene expression system using p-isopropyl benzoate (cumate) as an inducer was developed for the industrial production hosts, Bacillus subtilis and Bacillus megaterium. Cumate is non-toxic to the host, inexpensive, and carbon source-independent inducer which provides an economical option for large-scale production of valuable proteins and chemicals from Bacillus strains. The synthetic cumate-inducible system was constructed by combining the strong constitutive Bacillus promoter Pveg with regulatory elements of the Pseudomonas putida, CymR repressor, and its operator sequence CuO. The designed expression cassette containing a sfGFP reporter under the cumate-inducible promoter was assembled into a Bacillus-E. coli shuttle and gene expression investigated in the two Bacillus strains. Characterization of gene expression levels, expression kinetics, and dose-response to cumate inducer concentration confirmed high-level, but tightly controlled GFP reporter expression in tunable, cumate concentration-dependent manner. Unexpectedly, this expression system works equally well for Escherichia coli, resulting in a platform that can be used both in gram-positive and gram-negative expression host. Its tight regulation and controllable expression makes this system useful for metabolic engineering, synthetic biology studies as well industrial protein production.
KW - Bacillus megaterium
KW - Bacillus subtilis
KW - Cumate
KW - Gene expression
KW - Promoter
KW - Synthetic biology
UR - http://www.scopus.com/inward/record.url?scp=85055965458&partnerID=8YFLogxK
U2 - 10.1007/s00253-018-9485-4
DO - 10.1007/s00253-018-9485-4
M3 - Article
C2 - 30392122
AN - SCOPUS:85055965458
SN - 0175-7598
VL - 103
SP - 303
EP - 313
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 1
ER -