Development of biofuel cell adopting multiple poly(diallyldimethylammonium chloride) layers immobilized on carbon nanotube as powerful catalyst

Yeonjoo Ahn, Kye Sang Yoo, Lae Hyun Kim, Yongchai Kwon

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

A new enzymatic biofuel cell (EBC) adopting multiple glucose oxidase (GOx) and poly(diallyldimethylammonium chloride) (PDDA) immobilized on carbon nanotube (CNT) ([GOx/PDDA]n/CNT) is fabricated and effects of [GOx/PDDA]n/CNT catalysts on EBC performance are investigated using various electrochemical characterizations. Initially, both redox reaction of flavin adenine dinucleotides (FADs) within GOx and stepwise deposition of PDDA and GOx on CNT are estimated to determine optimal [GOx/PDDA]n/CNT catalyst. Also, its electron transfer pathway and reaction mechanism related to oxygen mediator is elucidated. With the optimized [GOx/PDDA]5/CNT catalyst, excellent catalytic activity and EBC performance are measured. When the catalyst is used, its electron transfer rate constant is 15.97 s−1, glucose sensitivity is 17 μA mM−1 cm−2, Michaelis–Menten constant is 1.44 mM and EBC maximum power density (MPD) is 0.79 mW cm−2. It indicates that the values are better than those of other similar structures. Moreover, in a comparison with MPDs of EBCs without provision of glucose, it is proved that PDDA and GOx make key role in improving EBC performance.

Original languageEnglish
Pages (from-to)17548-17556
Number of pages9
JournalInternational Journal of Hydrogen Energy
Volume41
Issue number39
DOIs
StatePublished - 19 Oct 2016

Keywords

  • Enzymatic biofuel cell
  • Glucose oxidase
  • Glucose oxidation reaction
  • Layer-by-layer
  • Poly(diallyldimethyl ammonium chloride)

Fingerprint

Dive into the research topics of 'Development of biofuel cell adopting multiple poly(diallyldimethylammonium chloride) layers immobilized on carbon nanotube as powerful catalyst'. Together they form a unique fingerprint.

Cite this