TY - JOUR
T1 - Differential expression, tissue-specific distribution, and posttranslational controls of phosphoenolpyruvate carboxylase
AU - Caburatan, Lorrenne
AU - Park, Joonho
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9
Y1 - 2021/9
N2 - Phosphoenolpyruvate carboxylase (PEPC) is a ubiquitous cytosolic enzyme, which is crucial for plant carbon metabolism. PEPC participates in photosynthesis by catalyzing the initial fixation of atmospheric CO2 and is abundant in both C4 and crassulacean acid metabolism leaves. PEPC is differentially expressed at different stages of plant development, mostly in leaves, but also in developing seeds. PEPC is known to show tissue-specific distribution in leaves and in other plant organs, such as roots, stems, and flowers. Plant PEPC undergoes reversible phosphorylation and monoubiquitination, which are posttranslational modifications playing important roles in regulatory processes and in protein localization. Phosphorylation activates the PEPC enzyme, making it more sensitive to glucose-6-phosphate and less sensitive to malate or aspartate. PEPC phosphorylation is known to be diurnally regulated and delicately changed in response to various environmental stimuli, in addition to light. PEPCs belong to a small gene family encoding several plant-type and distantly related bacterial-type PEPCs. This paper provides a minireview of the general information on PEPCs in both C4 and C3 plants.
AB - Phosphoenolpyruvate carboxylase (PEPC) is a ubiquitous cytosolic enzyme, which is crucial for plant carbon metabolism. PEPC participates in photosynthesis by catalyzing the initial fixation of atmospheric CO2 and is abundant in both C4 and crassulacean acid metabolism leaves. PEPC is differentially expressed at different stages of plant development, mostly in leaves, but also in developing seeds. PEPC is known to show tissue-specific distribution in leaves and in other plant organs, such as roots, stems, and flowers. Plant PEPC undergoes reversible phosphorylation and monoubiquitination, which are posttranslational modifications playing important roles in regulatory processes and in protein localization. Phosphorylation activates the PEPC enzyme, making it more sensitive to glucose-6-phosphate and less sensitive to malate or aspartate. PEPC phosphorylation is known to be diurnally regulated and delicately changed in response to various environmental stimuli, in addition to light. PEPCs belong to a small gene family encoding several plant-type and distantly related bacterial-type PEPCs. This paper provides a minireview of the general information on PEPCs in both C4 and C3 plants.
KW - Differential expression
KW - Monoubiquitination
KW - Phosphoenolpyruvate carboxylase
KW - Phosphorylation
KW - Posttranslational modification
KW - Single-cell C plant
KW - Tissue-specific expression
UR - http://www.scopus.com/inward/record.url?scp=85114726718&partnerID=8YFLogxK
U2 - 10.3390/plants10091887
DO - 10.3390/plants10091887
M3 - Review article
AN - SCOPUS:85114726718
SN - 2223-7747
VL - 10
JO - Plants
JF - Plants
IS - 9
M1 - 1887
ER -