TY - JOUR
T1 - DudE-Seq
T2 - Fast, flexible, and robust denoising for targeted amplicon sequencing
AU - Lee, Byunghan
AU - Moon, Taesup
AU - Yoon, Sungroh
AU - Weissman, Tsachy
N1 - Publisher Copyright:
© 2017 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/7
Y1 - 2017/7
N2 - We consider the correction of errors from nucleotide sequences produced by next-generation targeted amplicon sequencing. The next-generation sequencing (NGS) platforms can provide a great deal of sequencing data thanks to their high throughput, but the associated error rates often tend to be high. Denoising in high-throughput sequencing has thus become a crucial process for boosting the reliability of downstream analyses. Our methodology, named DUDE-Seq, is derived from a general setting of reconstructing finite-valued source data corrupted by a discrete memoryless channel and effectively corrects substitution and homopolymer indel errors, the two major types of sequencing errors in most high-throughput targeted amplicon sequencing platforms. Our experimental studies with real and simulated datasets suggest that the proposed DUDE-Seq not only outperforms existing alternatives in terms of error-correction capability and time efficiency, but also boosts the reliability of downstream analyses. Further, the flexibility of DUDE-Seq enables its robust application to different sequencing platforms and analysis pipelines by simple updates of the noise model. DUDE-Seq is available at http://data.snu.ac.kr/pub/dude-seq.
AB - We consider the correction of errors from nucleotide sequences produced by next-generation targeted amplicon sequencing. The next-generation sequencing (NGS) platforms can provide a great deal of sequencing data thanks to their high throughput, but the associated error rates often tend to be high. Denoising in high-throughput sequencing has thus become a crucial process for boosting the reliability of downstream analyses. Our methodology, named DUDE-Seq, is derived from a general setting of reconstructing finite-valued source data corrupted by a discrete memoryless channel and effectively corrects substitution and homopolymer indel errors, the two major types of sequencing errors in most high-throughput targeted amplicon sequencing platforms. Our experimental studies with real and simulated datasets suggest that the proposed DUDE-Seq not only outperforms existing alternatives in terms of error-correction capability and time efficiency, but also boosts the reliability of downstream analyses. Further, the flexibility of DUDE-Seq enables its robust application to different sequencing platforms and analysis pipelines by simple updates of the noise model. DUDE-Seq is available at http://data.snu.ac.kr/pub/dude-seq.
UR - http://www.scopus.com/inward/record.url?scp=85030621914&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0181463
DO - 10.1371/journal.pone.0181463
M3 - Article
C2 - 28749987
AN - SCOPUS:85030621914
SN - 1932-6203
VL - 12
JO - PLoS ONE
JF - PLoS ONE
IS - 7
M1 - e0181463
ER -