Dynamic Cyberattack Simulation: Integrating Improved Deep Reinforcement Learning with the MITRE-ATT&CK Framework

Sang Ho Oh, Jeongyoon Kim, Jongyoul Park

Research output: Contribution to journalArticlepeer-review

Abstract

As cyberattacks become increasingly sophisticated and frequent, it is crucial to develop robust cybersecurity measures that can withstand adversarial attacks. Adversarial simulation is an effective technique for evaluating the security of systems against various types of cyber threats. However, traditional adversarial simulation methods may not capture the complexity and unpredictability of real-world cyberattacks. In this paper, we propose the improved deep reinforcement learning (DRL) algorithm to enhance adversarial attack simulation for cybersecurity with real-world scenarios from MITRE-ATT&CK. We first describe the challenges of traditional adversarial simulation and the potential benefits of using DRL. We then present an improved DRL-based simulation framework that can realistically simulate complex and dynamic cyberattacks. We evaluate the proposed DRL framework using a cyberattack scenario and demonstrate its effectiveness by comparing it with existing DRL algorithms. Overall, our results suggest that DRL has significant potential for enhancing adversarial simulation for cybersecurity in real-world environments. This paper contributes to developing more robust and effective cybersecurity measures that can adapt to the evolving threat landscape of the digital world.

Original languageEnglish
Article number2831
JournalElectronics (Switzerland)
Volume13
Issue number14
DOIs
StatePublished - Jul 2024

Keywords

  • adversarial simulation
  • computer network
  • cybersecurity
  • deep reinforcement learning
  • real-world scenario

Fingerprint

Dive into the research topics of 'Dynamic Cyberattack Simulation: Integrating Improved Deep Reinforcement Learning with the MITRE-ATT&CK Framework'. Together they form a unique fingerprint.

Cite this