TY - JOUR
T1 - Dynamic exchange between particulate and dissolved matter following sequential resuspension of particles from an urban watershed under photo-irradiation
AU - Lee, Han Saem
AU - Hur, Jin
AU - Shin, Hyun Sang
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/8/15
Y1 - 2021/8/15
N2 - Particulate matter (PM) has long-term effects on water quality compared to dissolved matter (DM) during downstream transfer after inflows into an aquatic environment. In the present study, the characteristics, behavior, and effects of PM from an urban watershed under photo-irradiation were investigated through sequential resuspensions before being compared. Changes in the organic matter content, heavy metals (Mn, Fe, Zn, Pb), spectroscopic indices (SUVA254, slope ratio (SR), humidification index (HIX), fluorescence index (FI), and biological index (BIX)), excitation-emission matrix combined with parallel factor analysis components (EEM-PARAFAC), and disinfection by-product formation potential (DBPFP) were analyzed. According to our results, light enhanced the release of organic matter from PM but reduced dissolved heavy metals. The PMU affected by urban-derived pollutants (i.e., rainfall particles, road-deposited sediment, sewer-pipeline-deposited sediment) exhibited higher quantities of terrestrial humic-like organic matter than PMR, which contains base particles from riverines (i.e., soil, sediments). For the PMU, the humic-like fluorescent components (C1 and C2) enhanced under light conditions with every resuspension, whereas the components decreased in the PMR. Consistent with the PARAFAC results, the trihalomethane formation potential (THMFP) of the PMU was enhanced by approximately 2.8 times more than that of the PMR, and exhibited a high correlation with the fluorescent components (C1, r = 0.81, p < 0.001). The principal component analysis results also confirmed that the characteristics of dynamic exchanges between PM and DM were distinguished by PM sources and light, and the photo-released DM and their spectral characteristics displayed opposite behaviors depending on the PM sources during the sequential resuspensions.
AB - Particulate matter (PM) has long-term effects on water quality compared to dissolved matter (DM) during downstream transfer after inflows into an aquatic environment. In the present study, the characteristics, behavior, and effects of PM from an urban watershed under photo-irradiation were investigated through sequential resuspensions before being compared. Changes in the organic matter content, heavy metals (Mn, Fe, Zn, Pb), spectroscopic indices (SUVA254, slope ratio (SR), humidification index (HIX), fluorescence index (FI), and biological index (BIX)), excitation-emission matrix combined with parallel factor analysis components (EEM-PARAFAC), and disinfection by-product formation potential (DBPFP) were analyzed. According to our results, light enhanced the release of organic matter from PM but reduced dissolved heavy metals. The PMU affected by urban-derived pollutants (i.e., rainfall particles, road-deposited sediment, sewer-pipeline-deposited sediment) exhibited higher quantities of terrestrial humic-like organic matter than PMR, which contains base particles from riverines (i.e., soil, sediments). For the PMU, the humic-like fluorescent components (C1 and C2) enhanced under light conditions with every resuspension, whereas the components decreased in the PMR. Consistent with the PARAFAC results, the trihalomethane formation potential (THMFP) of the PMU was enhanced by approximately 2.8 times more than that of the PMR, and exhibited a high correlation with the fluorescent components (C1, r = 0.81, p < 0.001). The principal component analysis results also confirmed that the characteristics of dynamic exchanges between PM and DM were distinguished by PM sources and light, and the photo-released DM and their spectral characteristics displayed opposite behaviors depending on the PM sources during the sequential resuspensions.
KW - Dynamic exchange
KW - Particulate matter
KW - Photo-irradiation
KW - Sequential resuspension
KW - Urban watershed
UR - http://www.scopus.com/inward/record.url?scp=85106370425&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2021.117395
DO - 10.1016/j.envpol.2021.117395
M3 - Article
C2 - 34030064
AN - SCOPUS:85106370425
SN - 0269-7491
VL - 283
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 117395
ER -