Effect of bainitic microstructure on low-temperature toughness of high-strength API pipeline steels

Seung Wan Lee, Sang In Lee, Byoungchul Hwang

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

In this study the correlation between bainitic microstructure and the low-temperature toughness of high-strength API pipeline steels was discussed in terms of crack initiation and propagation in the microstructure. Three types of API pipeline steels with different bainitic microstructures were fabricated using varying alloying elements and thermo-mechanical processing conditions, and then their microstructure was characterized by optical and scanning electron microscopy, and electron backscatter diffraction (EBSD). In particular, the effective grain size and microstructure fraction of the steels were quantitatively measured by EBSD analysis. Although all the steels were composed of polygonal ferrite (PF), and complex bainitic microstructures such as acicular ferrite (AF), granular bainite (GB), and bainitic ferrite (BF), they had different effective grain sizes and microstructure fraction, depending on the alloying elements and thermo-mechanical processing conditions. Charpy impact test results showed that when the martensite-austenite constituent fraction was lowest, it resulted in higher upper-shelf energy, and absorbed energy at room temperature due to the decrease in crack initiation. In contrast, excellent low-temperature toughness, such as lower ductile-brittle transition temperature and higher absorbed energy at low temperatures, could be achieved with a bainitic microstructure with fine effective grain size and high fraction of high-angle grain boundaries, which act as obstacles to prevent cleavage crack propagation.

Original languageEnglish
Pages (from-to)293-303
Number of pages11
JournalJournal of Korean Institute of Metals and Materials
Volume58
Issue number5
DOIs
StatePublished - May 2020

Keywords

  • Bainitic microstructure
  • Ductile-brittle transition
  • Effective grain size
  • Low-temperature toughness
  • Pipeline steel

Fingerprint

Dive into the research topics of 'Effect of bainitic microstructure on low-temperature toughness of high-strength API pipeline steels'. Together they form a unique fingerprint.

Cite this