Effect of heat treatment on microstructure and mechanical properties of an Fe-6.5Mn-0.08C medium-manganese steel

Young Chul Yoon, Sang In Lee, Byoungchul Hwang

Research output: Contribution to journalArticlepeer-review

Abstract

Effect of heat treatment on microstructure and mechanical properties of an Fe-6.5Mn-0.08C medium-manganese steel is investigated in this study. Three kinds of medium-manganese steel specimens are fabricated by varying heat treatments of intermediate quenching (IQ), step quenching (SQ), and intercritical annealing (IA). Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the Fe-6.5Mn-0.08C medium-manganese steel specimens. The IQ and SQ specimens have microstructures of martensite matrix with ferrite, whereas IA specimen exhibits microstructure of acicular ferrite matrix with martensite. The tensile test results show that the SQ specimen with martensite matrix has the highest yield strength and the lowest elongation. On the other hand, the SQ specimen has the highest hardness due to the relatively lower reduction of carbon content in martensite during intercritical annealing. According to the fractography of tensile tested specimens, the SQ specimen exhibits a dimple and quasi-cleavage fracture appearance while the IQ and IA specimens have fully ductile fracture appearance with fine-sized dimples caused by microvoid coalescence at ferrite and martensite interface.

Original languageEnglish
Pages (from-to)8-13
Number of pages6
JournalKorean Journal of Materials Research
Volume31
Issue number1
DOIs
StatePublished - 2020

Keywords

  • Heat treatment
  • Mechanical properties
  • Medium-manganese steel
  • Microstructure

Fingerprint

Dive into the research topics of 'Effect of heat treatment on microstructure and mechanical properties of an Fe-6.5Mn-0.08C medium-manganese steel'. Together they form a unique fingerprint.

Cite this