Effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure

Sang In Lee, Ji Min Lee, Byoungchul Hwang

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This present study deals with the effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure. Six kinds of lowcarbon steel specimens were fabricated by adding micro-alloying elements of Nb, Ti and V, and by varying isothermal transformation temperature. Ferrite grain size of the specimens containing mirco-alloying elements was smaller than that of the Base specimens because of pinning effect by the precipitates of carbonitrides at austenite grain boundaries. The pearlite interlamellar spacing and cementite thickness decreased with decreasing transformation temperature, while the pearlite volume fraction was hardly affected by micro-alloying elements and transformation temperature. The room-temperature tensile test results showed that the yield strength increased mostly with decreasing ferrite grain size and elongation was slightly improved as the ferrite grain size and pearlite interlamellar spacing decreased. All the specimens exhibited a discontinuous yielding behavior and the yield point elongation of the Nb4 and TiNbV specimens containing micro-alloying elements was larger than that of the Base specimens, presumably due to repetitive pinning and release of dislocation by the fine precipitates of carbonitrides.

Original languageEnglish
Pages (from-to)184-191
Number of pages8
JournalKorean Journal of Materials Research
Volume27
Issue number4
DOIs
StatePublished - 1 Apr 2017

Keywords

  • Low-carbon steels
  • Micro-alloying elements
  • Tensile properties
  • Transformation temperature
  • Yield point elongation

Fingerprint

Dive into the research topics of 'Effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure'. Together they form a unique fingerprint.

Cite this