Electrical conductivity modulation in TaNx films grown by plasma enhanced atomic layer deposition

Sung Yeon Ryu, Byung Joon Choi

Research output: Contribution to journalArticlepeer-review

Abstract

TaNx film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as N2+H2 mixed gas, NH3, and H2. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using NH3 as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using N2+H2 mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown TaNx film with N2+H2 mixed gas, NH3, and H2. For a comparison, reactive sputter-grown TaNx film with N2 is also studied. The results reveal that ALD-grown TaNx films with NH3 and H2 include a metallic Ta-N bond, which results in the film's higher conductivity. Meanwhile, ALD-grown TaNx film with a N2+H2 mixed gas or sputtergrown TaNx film with N2 gas mainly contains a semiconducting Ta3N5 bond. Such a different portion of Ta-N and Ta3N5 bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.

Original languageEnglish
Pages (from-to)241-246
Number of pages6
JournalKorean Journal of Materials Research
Volume28
Issue number4
DOIs
StatePublished - 1 Apr 2018

Keywords

  • Chemical bonding
  • Electrical conductivity
  • Plasma enhanced atomic layer deposition
  • Reactive gas
  • TaN film

Fingerprint

Dive into the research topics of 'Electrical conductivity modulation in TaNx films grown by plasma enhanced atomic layer deposition'. Together they form a unique fingerprint.

Cite this