TY - JOUR
T1 - Emissions of Fungal Volatile Organic Compounds in Residential Environments and Temporal Emission Patterns
T2 - Implications for Sampling Methods
AU - Kim, Kyunghoon
AU - Lee, Suyeon
AU - Choi, Yelim
AU - Kim, Daekeun
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - Currently, little is known about the occurrences of fungi-derived microbial volatile organic compounds (mVOCs) in various indoor materials and their detection in residential environments, despite mVOCs being linked to several acute health effects. We identified various mVOCs emitted from fungi grown on PVC wallpaper, silicone rubber, and malt extract agar. We also investigated mVOCs temporal emission and whether fungi-derived VOCs concentration can be used to estimate fungal concentration in the air using active and passive air sampling methods. Among the three fungal growth media included in this study, silicone rubber produced the most variety of mVOCs: 106 compounds (from Aspergillus niger), 35 compounds (from Alternaria alternata), and 85 compounds (from Penicillium chrysogenum). We also found the emission patterns of eight chemical classes (i.e., aromatics, ethers, aliphatics, alcohols, ketones, aldehydes, chlorides, and nitrides) from the three different fungi. From the results of our field experiments in 11 residential environments, passive air samplers led to higher correlations coefficients (0.08 to 0.86) between mVOCs’ air concentrations and airborne fungal concentrations, compared with active air samplers, which showed negative correlation coefficients (−0.99 to −0.02) for most compounds. This study elucidated the occurrence and temporal emission patterns of fungal VOCs in residential environments.
AB - Currently, little is known about the occurrences of fungi-derived microbial volatile organic compounds (mVOCs) in various indoor materials and their detection in residential environments, despite mVOCs being linked to several acute health effects. We identified various mVOCs emitted from fungi grown on PVC wallpaper, silicone rubber, and malt extract agar. We also investigated mVOCs temporal emission and whether fungi-derived VOCs concentration can be used to estimate fungal concentration in the air using active and passive air sampling methods. Among the three fungal growth media included in this study, silicone rubber produced the most variety of mVOCs: 106 compounds (from Aspergillus niger), 35 compounds (from Alternaria alternata), and 85 compounds (from Penicillium chrysogenum). We also found the emission patterns of eight chemical classes (i.e., aromatics, ethers, aliphatics, alcohols, ketones, aldehydes, chlorides, and nitrides) from the three different fungi. From the results of our field experiments in 11 residential environments, passive air samplers led to higher correlations coefficients (0.08 to 0.86) between mVOCs’ air concentrations and airborne fungal concentrations, compared with active air samplers, which showed negative correlation coefficients (−0.99 to −0.02) for most compounds. This study elucidated the occurrence and temporal emission patterns of fungal VOCs in residential environments.
KW - chamber experiment
KW - emission
KW - field experiment
KW - fungi
KW - indoor materials
KW - mVOCs
UR - http://www.scopus.com/inward/record.url?scp=85139802983&partnerID=8YFLogxK
U2 - 10.3390/ijerph191912601
DO - 10.3390/ijerph191912601
M3 - Article
C2 - 36231902
AN - SCOPUS:85139802983
SN - 1661-7827
VL - 19
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 19
M1 - 12601
ER -