Energy-Based Unified Models for Predicting the Fatigue Life Behaviors of Austenitic Steels and Welded Joints in Ultra-Supercritical Power Plants

Jeong Ho Hwang, Dae Woong Kim, Jae Yong Lim, Seong Gu Hong

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The development of a cost-effective and accurate model for predicting the fatigue life of materials is essential for designing thermal power plants and assessing their structural reliability under operational conditions. This paper reports a novel energy-based approach for developing unified models that predict the fatigue life of boiler tube materials in ultra-supercritical (USC) power plants. The proposed method combines the Masing behavior with a cyclic stress–strain relationship and existing stress-based or strain-based fatigue life prediction models. Notably, the developed models conform to the structure of the modified Morrow model, which incorporates material toughness (a temperature compensation parameter) into the Morrow model to account for the effects of temperature. A significant advantage of this approach is that it eliminates the need for tensile tests, which are otherwise essential for assessing material toughness in the modified Morrow model. Instead, all material constants in our models are derived solely from fatigue test results. We validate our models using fatigue data from three promising USC boiler tube materials—Super304H, TP310HCbN, and TP347H—and their welded joints at operating temperatures of 500, 600, and 700 °C. The results demonstrate that approximately 91% of the fatigue data for all six materials fall within a 2.5× scatter band of the model’s predictions, indicating a high level of accuracy and broad applicability across various USC boiler tube materials and their welded joints, which is equivalent to the performance of the modified Morrow model.

Original languageEnglish
Article number2186
JournalMaterials
Volume17
Issue number10
DOIs
StatePublished - May 2024

Keywords

  • austenitic steel
  • boiler tube material
  • elevated temperature
  • fatigue life prediction model
  • low-cycle fatigue
  • plastic strain energy density
  • ultra-supercritical power plant

Fingerprint

Dive into the research topics of 'Energy-Based Unified Models for Predicting the Fatigue Life Behaviors of Austenitic Steels and Welded Joints in Ultra-Supercritical Power Plants'. Together they form a unique fingerprint.

Cite this