Estimates of plastic limit loads of thick-walled cylinders with non-idealized through-wall cracks

Tae Song Han, Nam Su Huh, Do Jun Shim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In order to assess a structural integrity of cracked components made of highly ductile material based on fully plastic fracture mechanics concept, an accurate plastic limit load of components of interest is crucial element. Such a plastic limit load can also be applied to estimate elastic-plastic J-integral based on the reference stress concept. In this context, during last several decades, many efforts have been made to suggest plastic limit load solutions of cracked cylinder. Recent works for evaluating rupture probabilities of nuclear piping indicate that the only use of idealized circumferential through-wall crack leads to very conservative results which in turn gives higher rupture probabilities of nuclear piping, thus the considerations of more realistic crack shape during crack growth due to primary water stress corrosion cracking (PWSCC) and fatigue and axial through-wall crack were recommended to come up with more realistic rupture probabilities of nuclear piping. Then, the needs of fracture mechanics parameters of non-idealized through-wall cracks both in axial and circumferential directions have been raised. In the present work, the plastic limit loads of thick-walled cylinder with non-idealized axial and circumferential through-wall cracks are proposed based on detailed 3-dimensional finite element analyses. The present results can be applied either to assess structural integrity of thick-walled nuclear piping with non-idealized through-wall cracks or to calculate elastic-plastic J-integral using the reference stress concept.

Original languageEnglish
Title of host publicationASME 2013 Pressure Vessels and Piping Conference, PVP 2013
DOIs
StatePublished - 2013
EventASME 2013 Pressure Vessels and Piping Conference, PVP 2013 - Paris, France
Duration: 14 Jul 201318 Jul 2013

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume6 A
ISSN (Print)0277-027X

Conference

ConferenceASME 2013 Pressure Vessels and Piping Conference, PVP 2013
Country/TerritoryFrance
CityParis
Period14/07/1318/07/13

Fingerprint

Dive into the research topics of 'Estimates of plastic limit loads of thick-walled cylinders with non-idealized through-wall cracks'. Together they form a unique fingerprint.

Cite this