Evaluation of Posit Arithmetic on Machine Learning based on Approximate Exponential Functions

Hyun Woo Oh, Won Sik Jeong, Seung Eun Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Recent advances in semiconductor technology lead to ongoing applications to adopt complex techniques based on neural networks. In line with this trend, the concept of optimizing real number arithmetic has been raised. In this paper, we evaluate the performance of the noble number system named posit on neural networks by analyzing the execution of approximate exponential functions, which is fundamental to several activation functions, with posit32 and float32. To implement the functions with posit arithmetic, we designed the software posit library consisting of basic arithmetic operations and conversion operations from/to C standard data types. The result shows that posit arithmetic reduces the average relative error rate by up to 87.12% on the exponential function.

Original languageEnglish
Title of host publicationProceedings - International SoC Design Conference 2022, ISOCC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages358-359
Number of pages2
ISBN (Electronic)9781665459716
DOIs
StatePublished - 2022
Event19th International System-on-Chip Design Conference, ISOCC 2022 - Gangneung-si, Korea, Republic of
Duration: 19 Oct 202222 Oct 2022

Publication series

NameProceedings - International SoC Design Conference 2022, ISOCC 2022

Conference

Conference19th International System-on-Chip Design Conference, ISOCC 2022
Country/TerritoryKorea, Republic of
CityGangneung-si
Period19/10/2222/10/22

Keywords

  • activation functions
  • exponential approximation
  • IEEE-754
  • posit
  • real number arithmetic

Fingerprint

Dive into the research topics of 'Evaluation of Posit Arithmetic on Machine Learning based on Approximate Exponential Functions'. Together they form a unique fingerprint.

Cite this