FDCNet: Feature Drift Compensation Network for Class-Incremental Weakly Supervised Object Localization

Sejin Park, Taehyung Lee, Yeejin Lee, Byeongkeun Kang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

This work addresses the task of class-incremental weakly supervised object localization (CI-WSOL). The goal is to incrementally learn object localization for novel classes using only image-level annotations while retaining the ability to localize previously learned classes. This task is important because annotating bounding boxes for every new incoming data is expensive, although object localization is crucial in various applications. To the best of our knowledge, we are the first to address this task. Thus, we first present a strong baseline method for CI-WSOL by adapting the strategies of class-incremental classifiers to mitigate catastrophic forgetting. These strategies include applying knowledge distillation, maintaining a small data set from previous tasks, and using cosine normalization. We then propose the feature drift compensation network to compensate for the effects of feature drifts on class scores and localization maps. Since updating network parameters to learn new tasks causes feature drifts, compensating for the final outputs is necessary. Finally, we evaluate our proposed method by conducting experiments on two publicly available datasets (ImageNet-100 and CUB-200). The experimental results demonstrate that the proposed method outperforms other baseline methods.

Original languageEnglish
Title of host publicationMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages2045-2053
Number of pages9
ISBN (Electronic)9798400701085
DOIs
StatePublished - 26 Oct 2023
Event31st ACM International Conference on Multimedia, MM 2023 - Ottawa, Canada
Duration: 29 Oct 20233 Nov 2023

Publication series

NameMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia

Conference

Conference31st ACM International Conference on Multimedia, MM 2023
Country/TerritoryCanada
CityOttawa
Period29/10/233/11/23

Keywords

  • catastrophic forgetting
  • class-incremental learning
  • incremental learning
  • weakly supervised object localization

Fingerprint

Dive into the research topics of 'FDCNet: Feature Drift Compensation Network for Class-Incremental Weakly Supervised Object Localization'. Together they form a unique fingerprint.

Cite this