TY - JOUR
T1 - FGANet
T2 - FNIRS-Guided Attention Network for Hybrid EEG-fNIRS Brain-Computer Interfaces
AU - Kwak, Youngchul
AU - Song, Woo Jin
AU - Kim, Seong Eun
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2022
Y1 - 2022
N2 - Non-invasive brain-computer interfaces (BCIs) have been widely used for neural decoding, linking neural signals to control devices. Hybrid BCI systems using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have received significant attention for overcoming the limitations of EEG- A nd fNIRS-standalone BCI systems. However, most hybrid EEG-fNIRS BCI studies have focused on late fusion because of discrepancies in their temporal resolutions and recording locations. Despite the enhanced performance of hybrid BCIs, late fusion methods have difficulty in extracting correlated features in both EEG and fNIRS signals. Therefore, in this study, we proposed a deep learning-based early fusion structure, which combines two signals before the fully-connected layer, called the fNIRS-guided attention network (FGANet). First, 1D EEG and fNIRS signals were converted into 3D EEG and fNIRS tensors to spatially align EEG and fNIRS signals at the same time point. The proposed fNIRS-guided attention layer extracted a joint representation of EEG and fNIRS tensors based on neurovascular coupling, in which the spatially important regions were identified from fNIRS signals, and detailed neural patterns were extracted from EEG signals. Finally, the final prediction was obtained by weighting the sum of the prediction scores of the EEG and fNIRS-guided attention features to alleviate performance degradation owing to delayed fNIRS response. In the experimental results, the FGANet significantly outperformed the EEG-standalone network. Furthermore, the FGANet has 4.0% and 2.7% higher accuracy than the state-of-the-art algorithms in mental arithmetic and motor imagery tasks, respectively.
AB - Non-invasive brain-computer interfaces (BCIs) have been widely used for neural decoding, linking neural signals to control devices. Hybrid BCI systems using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have received significant attention for overcoming the limitations of EEG- A nd fNIRS-standalone BCI systems. However, most hybrid EEG-fNIRS BCI studies have focused on late fusion because of discrepancies in their temporal resolutions and recording locations. Despite the enhanced performance of hybrid BCIs, late fusion methods have difficulty in extracting correlated features in both EEG and fNIRS signals. Therefore, in this study, we proposed a deep learning-based early fusion structure, which combines two signals before the fully-connected layer, called the fNIRS-guided attention network (FGANet). First, 1D EEG and fNIRS signals were converted into 3D EEG and fNIRS tensors to spatially align EEG and fNIRS signals at the same time point. The proposed fNIRS-guided attention layer extracted a joint representation of EEG and fNIRS tensors based on neurovascular coupling, in which the spatially important regions were identified from fNIRS signals, and detailed neural patterns were extracted from EEG signals. Finally, the final prediction was obtained by weighting the sum of the prediction scores of the EEG and fNIRS-guided attention features to alleviate performance degradation owing to delayed fNIRS response. In the experimental results, the FGANet significantly outperformed the EEG-standalone network. Furthermore, the FGANet has 4.0% and 2.7% higher accuracy than the state-of-the-art algorithms in mental arithmetic and motor imagery tasks, respectively.
KW - and fNIRS-guided attention networks
KW - Brain-computer interface (BCI)
KW - deep learning
KW - electroencephalography (EEG)
KW - functional near-infrared spectroscopy (fNIRS)
KW - hybrid BCI
UR - http://www.scopus.com/inward/record.url?scp=85124765441&partnerID=8YFLogxK
U2 - 10.1109/TNSRE.2022.3149899
DO - 10.1109/TNSRE.2022.3149899
M3 - Article
C2 - 35130163
AN - SCOPUS:85124765441
SN - 1534-4320
VL - 30
SP - 329
EP - 339
JO - IEEE Transactions on Neural Systems and Rehabilitation Engineering
JF - IEEE Transactions on Neural Systems and Rehabilitation Engineering
ER -