Flash-Induced Stretchable Cu Conductor via Multiscale-Interfacial Couplings

Jung Hwan Park, Jeongmin Seo, Cheolgyu Kim, Daniel J. Joe, Han Eol Lee, Tae Hong Im, Jae Young Seok, Chang Kyu Jeong, Boo Soo Ma, Hyung Kun Park, Taek Soo Kim, Keon Jae Lee

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Herein, a novel stretchable Cu conductor with excellent conductivity and stretchability is reported via the flash-induced multiscale tuning of Cu and an elastomer interface. Microscale randomly wrinkled Cu (amplitude of ≈5 µm and wavelength of ≈45 µm) is formed on a polymer substrate through a single pulse of a millisecond flash light, enabling the elongation of Cu to exceed 20% regardless of the stretching direction. The nanoscale interlocked interface between the Cu nanoparticles (NPs) and the elastomer increases the adhesion force of Cu, which contributes to a significant improvement of the Cu stability and stretchability under harsh yielding stress. Simultaneously, the flash-induced photoreduction of CuO NPs and subsequent Cu NP welding lead to outstanding conductivity (≈37 kS cm−1) of the buckled elastic electrode. The 3D structure of randomly wrinkled Cu is modeled by finite element analysis simulations to show that the flash-activated stretchable Cu conductors can endure strain over 20% in all directions. Finally, the wrinkled Cu is utilized for wireless near-field communication on the skin of human wrist.

Original languageEnglish
Article number1801146
JournalAdvanced Science
Volume5
Issue number11
DOIs
StatePublished - Nov 2018

Keywords

  • flash–material interactions
  • interlocking
  • stretchable conductors
  • wireless communication
  • wrinkling

Fingerprint

Dive into the research topics of 'Flash-Induced Stretchable Cu Conductor via Multiscale-Interfacial Couplings'. Together they form a unique fingerprint.

Cite this