Generalizing from several related classification tasks to a new unlabeled sample

Gilles Blanchard, Gyemin Lee, Clayton Scott

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

362 Scopus citations

Abstract

We consider the problem of assigning class labels to an unlabeled test data set, given several labeled training data sets drawn from similar distributions. This problem arises in several applications where data distributions fluctuate because of biological, technical, or other sources of variation. We develop a distributionfree, kernel-based approach to the problem. This approach involves identifying an appropriate reproducing kernel Hilbert space and optimizing a regularized empirical risk over the space. We present generalization error analysis, describe universal kernels, and establish universal consistency of the proposed methodology. Experimental results on flow cytometry data are presented.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 24
Subtitle of host publication25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
PublisherNeural Information Processing Systems
ISBN (Print)9781618395993
StatePublished - 2011
Event25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 - Granada, Spain
Duration: 12 Dec 201114 Dec 2011

Publication series

NameAdvances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011

Conference

Conference25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Country/TerritorySpain
CityGranada
Period12/12/1114/12/11

Fingerprint

Dive into the research topics of 'Generalizing from several related classification tasks to a new unlabeled sample'. Together they form a unique fingerprint.

Cite this