Generating images in compressed domain using generative adversarial networks

Byeongkeun Kang, Subarna Tripathi, Truong Q. Nguyen

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In this article, we present a generative adversarial network framework that generates compressed images instead of synthesizing raw RGB images and compressing them separately. In the real world, most images and videos are stored and transferred in a compressed format to save storage capacity and data transfer bandwidth. However, since typical generative adversarial networks generate raw RGB images, those generated images need to be compressed by a post-processing stage to reduce the data size. Among image compression methods, JPEG has been one of the most commonly used lossy compression methods for still images. Hence, we propose a novel framework that generates JPEG compressed images using generative adversarial networks. The novel generator consists of the proposed locally connected layers, chroma subsampling layers, quantization layers, residual blocks, and convolution layers. The locally connected layer is proposed to enable block-based operations. We also discuss training strategies for the proposed architecture including the loss function and the decoding between its generator and its discriminator. The proposed method is evaluated using the publicly available CIFAR-10 dataset and LSUN bedroom dataset. The results demonstrate that the proposed method is able to generate compressed data with competitive qualities.

Original languageEnglish
Pages (from-to)180977-180991
Number of pages15
JournalIEEE Access
Volume8
DOIs
StatePublished - 2020

Keywords

  • Generative adversarial networks
  • Image generation
  • Image synthesis

Fingerprint

Dive into the research topics of 'Generating images in compressed domain using generative adversarial networks'. Together they form a unique fingerprint.

Cite this