TY - JOUR
T1 - Hepatoprotective phenylpropanoids from Scrophularia buergeriana roots against CCl4-induced toxicity
T2 - Action mechanism and structure-activity relationship
AU - Eun, Ju Lee
AU - So, Ra Kim
AU - Kim, Jinwoong
AU - Young, Choong Kim
PY - 2002
Y1 - 2002
N2 - Phenylpropanoids isolated from the roots of Scrophularia buergeriana MIQ. (Scrophulariaceae) protected primary cultures of rat hepatocytes from toxicity induced by carbon tetrachloride (CCl4). In this report, we show that two of these phenylpropanoids, 4-O-E-p-methoxycinnamoyl-α-L-rhamnopyranoside ester (1) and p-methoxycinnamic acid (3) have significant hepatoprotective activity; another phenylpropanoid used for comparison, isoferulic acid (11), was equally active. To determine the mechanism(s) by which these three phenylpropanoids exerted their hepatoprotective activity, we measured activities of enzymes involved in the glutathione (GSH) redox system and assayed the level of hepatic mitochondrial GSH. The GSH levels in primary cultures of rat hepatocytes were significantly reduced with CCl4 insult, but were significantly preserved by the treatment with these three phenylpropanoids. The activities of glutathione disulfide reductase and glutathione-S-transferase which normally decrease in CCl4-injured rat hepatocytes were significantly preserved by the treatment with these three phenylpropanoids. In addition, in CCl4-injured rat hepatocytes, the increased formation of malondialdehyde, a byproduct of lipid peroxidation, was reduced by the treatment with these phenylpropanoids. We determined the essential structural moiety within these three phenylpropanoids needed to exert hepatoprotective activity. The α,β-unsaturated ester moiety seemed to be essential for exerting hepatoprotective activity.
AB - Phenylpropanoids isolated from the roots of Scrophularia buergeriana MIQ. (Scrophulariaceae) protected primary cultures of rat hepatocytes from toxicity induced by carbon tetrachloride (CCl4). In this report, we show that two of these phenylpropanoids, 4-O-E-p-methoxycinnamoyl-α-L-rhamnopyranoside ester (1) and p-methoxycinnamic acid (3) have significant hepatoprotective activity; another phenylpropanoid used for comparison, isoferulic acid (11), was equally active. To determine the mechanism(s) by which these three phenylpropanoids exerted their hepatoprotective activity, we measured activities of enzymes involved in the glutathione (GSH) redox system and assayed the level of hepatic mitochondrial GSH. The GSH levels in primary cultures of rat hepatocytes were significantly reduced with CCl4 insult, but were significantly preserved by the treatment with these three phenylpropanoids. The activities of glutathione disulfide reductase and glutathione-S-transferase which normally decrease in CCl4-injured rat hepatocytes were significantly preserved by the treatment with these three phenylpropanoids. In addition, in CCl4-injured rat hepatocytes, the increased formation of malondialdehyde, a byproduct of lipid peroxidation, was reduced by the treatment with these phenylpropanoids. We determined the essential structural moiety within these three phenylpropanoids needed to exert hepatoprotective activity. The α,β-unsaturated ester moiety seemed to be essential for exerting hepatoprotective activity.
KW - Carbon tetrachloride
KW - Hepatoprotective activity
KW - Phenylpropanoids
KW - Scrophularia buergeriana
KW - Scrophulariaceae
KW - Structure-activity relationship
UR - https://www.scopus.com/pages/publications/0036271131
U2 - 10.1055/s-2002-32081
DO - 10.1055/s-2002-32081
M3 - Article
C2 - 12058315
AN - SCOPUS:0036271131
SN - 0032-0943
VL - 68
SP - 407
EP - 411
JO - Planta Medica
JF - Planta Medica
IS - 5
ER -