TY - JOUR
T1 - Housing Market Trend Forecasts through Statistical Comparisons based on Big Data Analytic Methods
AU - Han, Seungwoo
AU - Ko, Yongho
AU - Kim, Jimin
AU - Hong, Taehoon
N1 - Publisher Copyright:
© 2017 American Society of Civil Engineers.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Assessments and forecasts of housing markets can provide insight into the fundamental sustainability of housing and construction. The home sales index (HSI) is considered one of the most important factors for forecasting economic trends of housing markets in the real estate and construction industry, and researchers have tried to develop relevant forecasting models for the HSI. The autoregressive integrated moving average (ARIMA) has generally been used for forecasting future trends based on time series but without investigating any of the influences of social factors. However, there are many demands for effective HSI forecasting by identifying the various social factors influencing the HSI. The HSI can be effectively forecasted in advance by observing several social factors. Such forecasting methods can be developed using big data analytic methods that focus on the relationship between those factors and HSI using web search data. This study suggests a methodology for forecasting model development with the provision of fundamental attributes and the pros and cons of each model to which the multiple regression analysis (MRA) and the artificial neural network (ANN) were applied. The forecasting performance of these models was compared with that by ARIMA. This study also quantifies the HSI forecasting accuracy between MRA and ANN based on social factors obtained from web search data. The forecast HSI values using ARIMA are more accurate than those of MRA and ANN. The lowest mean absolute error and normalized mean-square error for each model were calculated as 1.680 and 1.089 by MRA, 1.557 and 1.843 by ANN, and 0.173 and 0.294 by ARIMA, respectively. This methodology could allow many researchers to create and develop forecasting models using web search data for HSI forecasting and other related economic indexes.
AB - Assessments and forecasts of housing markets can provide insight into the fundamental sustainability of housing and construction. The home sales index (HSI) is considered one of the most important factors for forecasting economic trends of housing markets in the real estate and construction industry, and researchers have tried to develop relevant forecasting models for the HSI. The autoregressive integrated moving average (ARIMA) has generally been used for forecasting future trends based on time series but without investigating any of the influences of social factors. However, there are many demands for effective HSI forecasting by identifying the various social factors influencing the HSI. The HSI can be effectively forecasted in advance by observing several social factors. Such forecasting methods can be developed using big data analytic methods that focus on the relationship between those factors and HSI using web search data. This study suggests a methodology for forecasting model development with the provision of fundamental attributes and the pros and cons of each model to which the multiple regression analysis (MRA) and the artificial neural network (ANN) were applied. The forecasting performance of these models was compared with that by ARIMA. This study also quantifies the HSI forecasting accuracy between MRA and ANN based on social factors obtained from web search data. The forecast HSI values using ARIMA are more accurate than those of MRA and ANN. The lowest mean absolute error and normalized mean-square error for each model were calculated as 1.680 and 1.089 by MRA, 1.557 and 1.843 by ANN, and 0.173 and 0.294 by ARIMA, respectively. This methodology could allow many researchers to create and develop forecasting models using web search data for HSI forecasting and other related economic indexes.
KW - Artificial neural network (ANN)
KW - Autoregressive integrated moving average (ARIMA)
KW - Home sales index (HSI)
KW - Housing market
KW - Regression
KW - Web search data
UR - http://www.scopus.com/inward/record.url?scp=85034592448&partnerID=8YFLogxK
U2 - 10.1061/(ASCE)ME.1943-5479.0000583
DO - 10.1061/(ASCE)ME.1943-5479.0000583
M3 - Article
AN - SCOPUS:85034592448
SN - 0742-597X
VL - 34
JO - Journal of Management in Engineering
JF - Journal of Management in Engineering
IS - 2
M1 - 04017054
ER -