Incorporating Pipe Age and Sizes into Pipe Roughness Coefficient Estimation for Urban Flood Modeling: A Scenario-Based Roughness Approach

Soon Ho Kwon, Woo Jin Lee, Jong Hwan Kang, Hwandon Jun

Research output: Contribution to journalArticlepeer-review

Abstract

With climate change, the frequency and severity of localized heavy rainfalls are increasing. Thus, for urban drainage networks (UDNs), particularly those in aging cities such as Seoul, Republic of Korea, flood risk management challenges are mounting. Conventional design standards typically apply uniform roughness coefficients based on new pipe conditions, neglecting the ongoing performance degradation from physical influences. This study introduces a methodology that systematically incorporates pipe age and size into roughness coefficient scenarios for higher-accuracy 1D–2D rainfall–runoff hydrologic–hydraulic simulations. Eleven roughness scenarios (a baseline and ten aging-based scenarios) are applied across seven UDNs using historical rainfall data. The most representative scenario (S3) is identified using a Euclidean distance metric combining the peak water-level error and root mean square error. For two rainfall events, S3 yields substantial increases in the simulated mean flood volumes (75.02% and 76.45%) compared with the baseline, while spatial analysis reveals significantly expanded inundation areas and increased flood depths. These findings underscore the critical impact of pipe deterioration on hydraulic capacity and demonstrate the importance of incorporating aging infrastructure into flood modeling and UDN design. This approach offers empirical support for updating UDN design standards for more resilient flood management.

Original languageEnglish
Article number7989
JournalSustainability (Switzerland)
Volume17
Issue number17
DOIs
StatePublished - Sep 2025

Keywords

  • 1D–2D rainfall–runoff hydrologic–hydraulic simulation
  • pipe age and sizes
  • pipe deterioration
  • pipe roughness coefficient
  • urban drainage network

Fingerprint

Dive into the research topics of 'Incorporating Pipe Age and Sizes into Pipe Roughness Coefficient Estimation for Urban Flood Modeling: A Scenario-Based Roughness Approach'. Together they form a unique fingerprint.

Cite this