TY - JOUR
T1 - Influence of Cu and Ni on ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys
AU - Hwang, Byoungchul
PY - 2013
Y1 - 2013
N2 - The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating lowtemperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of δ-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and δ-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.
AB - The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating lowtemperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of δ-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and δ-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.
KW - Alloys
KW - Austenite stability
KW - Ductile-brittle transition
KW - Low-temperature toughness
KW - Metastable austenitic
UR - http://www.scopus.com/inward/record.url?scp=84886779482&partnerID=8YFLogxK
U2 - 10.3740/MRSK.2013.23.7.385
DO - 10.3740/MRSK.2013.23.7.385
M3 - Article
AN - SCOPUS:84886779482
SN - 1225-0562
VL - 23
SP - 385
EP - 391
JO - Korean Journal of Materials Research
JF - Korean Journal of Materials Research
IS - 7
ER -