TY - JOUR
T1 - Influence of Tear Protein Deposition on the Oxygen Permeability of Soft Contact Lenses
AU - Lee, Se Eun
AU - Kim, So Ra
AU - Park, Mijung
N1 - Publisher Copyright:
© 2017 Se Eun Lee et al.
PY - 2017
Y1 - 2017
N2 - Purpose. To investigate the effect of tear protein deposition on the change in oxygen permeability (Dk) of soft contact lenses (SCL). Methods. Three hydrogel lenses (polymacon, nelfilcon A, and etafilcon A) and two silicon hydrogel lenses (lotrafilcon A and balafilcon A) were investigated. Etafilcon A lenses were incubated in artificial tear solution for 1, 6, 12, and 48 h, whereas the other SCL were incubated for 1, 3, 7, and 14 days. Oxygen permeability was measured using the polarographic method, and lenses were stacked in four layers to correct the boundary effect. Results. The Dk of all investigated SCL was decreased by the protein deposition. Silicone hydrogel lenses showed a smaller deposition of artificial tear proteins than conventional hydrogel lenses. However, their Dk was reduced twofold than those of 3 conventional hydrogel lenses when compared at the same level of protein deposition. Despite a large amount of total deposited protein in etafilcon A lenses, their Dk was more stable than other SCL. Conclusions. From the results, it was revealed that the Dk of SCL is different from the value provided by manufacturers because of the tear protein deposition on surface and/or in pore of SCL; however, the degree of Dk change in SCL was not simply correlated with the amount of tear protein deposition. Thus, it is considered that the correlation between tear protein deposition and properties of lens materials affects Dk change.
AB - Purpose. To investigate the effect of tear protein deposition on the change in oxygen permeability (Dk) of soft contact lenses (SCL). Methods. Three hydrogel lenses (polymacon, nelfilcon A, and etafilcon A) and two silicon hydrogel lenses (lotrafilcon A and balafilcon A) were investigated. Etafilcon A lenses were incubated in artificial tear solution for 1, 6, 12, and 48 h, whereas the other SCL were incubated for 1, 3, 7, and 14 days. Oxygen permeability was measured using the polarographic method, and lenses were stacked in four layers to correct the boundary effect. Results. The Dk of all investigated SCL was decreased by the protein deposition. Silicone hydrogel lenses showed a smaller deposition of artificial tear proteins than conventional hydrogel lenses. However, their Dk was reduced twofold than those of 3 conventional hydrogel lenses when compared at the same level of protein deposition. Despite a large amount of total deposited protein in etafilcon A lenses, their Dk was more stable than other SCL. Conclusions. From the results, it was revealed that the Dk of SCL is different from the value provided by manufacturers because of the tear protein deposition on surface and/or in pore of SCL; however, the degree of Dk change in SCL was not simply correlated with the amount of tear protein deposition. Thus, it is considered that the correlation between tear protein deposition and properties of lens materials affects Dk change.
UR - http://www.scopus.com/inward/record.url?scp=85013466023&partnerID=8YFLogxK
U2 - 10.1155/2017/5131764
DO - 10.1155/2017/5131764
M3 - Article
AN - SCOPUS:85013466023
SN - 2090-004X
VL - 2017
JO - Journal of Ophthalmology
JF - Journal of Ophthalmology
M1 - 5131764
ER -